Кровоснабжение надпочечников. Строение надпочечников: основные функции и гормоны

Эндокринная система

Структура эндокринной системы

Эндокринная система относится к числу регуляторно-интегрирующих систем организма наряду с сердечно-сосудистой, нервной и иммунной, выступая с ними в теснейшем единстве. В ее ведении находится регуляция важнейших вегетативных функций организма: роста, репродукции, размножения и дифференцировки клеток, обмена веществ и энергии, секреции, экскреции, всасывания, поведенческих реакций и других. В целом функция эндокринной системы можно определить как поддержание гомеостаза организма.

Эндокринная система состоит из:

· эндокринных желез - органов, вырабатывающих гормоны (щитовидная железа, надпочечники, эпифиз, гипофиз и другие);

· эндокринных частей неэндокринных органов (островки Лангерганса поджелудочной железы);

· одиночных гормонпродуцирующих клеток, расположенных диффузно в различных органах - диффузная эндокринная система.

Общие принципы структурно-функциональной организации эндокринных желез:

· не имеют выводных протоков, так как выделяют гормоны в кровь;

· имеют богатое кровоснабжение;

· имеют капилляры фенестрированного или синусоидного типа;

· являются органами паренхиматозного типа, в большинстве своем образованы эпителиальной тканью, формирующей тяжи и фолликулы;

· в эндокринных органах преобладает паренхима, строма же развита слабее, то есть органы построены экономно;

· вырабатывают гормоны - биологически активные вещества, оказывающие выраженные эффекты в малых количествах.

Классификация гормонов:

· белки и полипептиды - гормоны гипофиза, гипотоламуса, поджелудочной железы и некоторых других желез;

· производные аминокислот - гормоны щитовидной железы (тироксин и трийодтиронин), гормон мозгового вещества надпочечников адреналин, серотонин, вырабатываемый многими эндокринными железами и клетками и другие;

· стероиды (производные холестерина) - половые гормоны, гормоны коры надпочечников, витамин D2 (кальцитриол).



Особенности действия гормонов:

· дистантность - могут вырабатываться далеко от клеток-мишеней;

· специфичность;

· избирательность;

· высокая активность в малых дозах.

Механизм действия гормонов

Попадя в кровь, гормоны с ее током достигают регулируемых клеток, тканей, органов, которые называются мишенями. Можно выделить два основных механизма действия гормонов:

· Первый механизм - гормон связывается на поверхности клеток с комплементарными ему рецепторами и изменяет пространственную ориентацию рецептора. Последние являются трансмембранными белками и состоят из рецепторной и каталитической части. При связывании с гормоном активируется каталитическая субъединица, которая начинает синтез вторичного посредника (мессенджера). Мессенджер активирует целый каскад ферментов, что ведет к изменению внутриклеточных процессов. Например, аденилатциклаза вырабатывает циклический аденозинмонофосфат, регулирующий ряд процессов в клетке. По данному механизму функционируют гормоны белковой природы, молекулы которых гидрофильны и не могут проникать через клеточные мембраны.

· Второй механизм - гормон проникает в клетку, связывается с белком-рецептором и вместе с ним попадает в ядро, где изменяет активность соответствующих генов. Это ведет к изменению метаболизма клетки. Эти же гормоны могут действовать на отдельные органеллы, например, митохондрии. По этому механизму действуют жирорастворимые стероидные и тиреоидные гормоны, которые благодаря липотропным свойствам легко проникают внутрь клетки через ее оболочку.

Классификация эндокринных желез по иерархическому принципу:

· центральные - гипоталамус, эпифиз и гипофиз. Они осуществляют контроль за деятельностью других (периферических) эндокринных желез;

· периферические, которые осуществляют непосредственный контроль за важнейшими функциями организма.

В зависимости от того, находятся ли они под регулирующим действием гипофиза или нет, периферические эндокринные железы делятся на две группы:

· 1 группа - аденогипофизнезависимые кальцитониноциты щитовидной железы, паращитовидная железа, мозговое вещество надпочечников, островковый аппарат поджелудочной железы, тимус, эндокринные клетки диффузной эндокринной системы;

· 2 группа - аденогипофиззависимые щитовидная железа, кора надпочечников, гонады.

По уровню структурной организации:

· эндокринные органы (щитовидная и паращитовидные железы, надпочечники, гипофиз, эпифиз);

· эндокринные отделы или ткани в составе органов, сочетающих эндокринные и неэндокринные функции (гипоталамус, островки Лангерганса поджелудочной железы, ретикулоэпителий и тельца Гассаля в тимуса, клетки Сертоли извитых канальцев яичка и фолликулярный эпителий яичка);

· клетки диффузной эндокринной системы.

Строение гипоталамуса

Гипоталамус является центром регуляции вегетативных функций и высшим эндокринным центром. Он оказывает трансаденогипофизарное влияние (через стимуляцию выработки гипофизом тропных гормонов) на аденогипофиззависмые эндокринные железы и парааденогипофизарное влияние на аденогипофизнезависимые железы. Гипоталамус осуществляет контроль за всеми висцеральными функциями организма, объединяет нервные и эндокринные механизмы регуляции.

Гипоталамус занимает базальную часть промежуточного мозга - находится под зрительным бугром (таламусом), образуя дно 3 желудочка. Полость 3 желудочка продолжается в воронку, направленную в строну гипофиза. Стенка этой воронки называется гипофизарной ножкой. Ее дистальный конец продолжается в заднюю долю гипофиза (нейрогипофиз). Кпереди от гипофизарной ножки утолщение дна 3 желудочка образует срединное возвышение (медиальную эминенцию), содержащую первичную капиллярную сеть.

В гипоталамусе выделяют:

· передний;

· средний (медиобазальный);

· задний отделы.

Основную массу гипоталамуса составляют нервные и нейросекреторные клетки. Они образуют более 30 ядер.

Передний гипоталамус содержит наиболее крупные парные супраоптические и паравентрикулярные ядра, а также ряд других ядер. Супраоптические ядра образованы в основном крупными пептидхолинергическими нейронами. Аксоны пептидхолинергических нейронов идут через гипофизарную ножку в заднюю долю гипофиза и образуют синапсы на кровеносных сосудах - аксовазальные синапсы. Нейроны супраоптических ядер секретируют в основном антидиуретический гормон или вазопресин. По аксону гормон транспортируется в заднюю долю гипофиза и накапливается в расширении аксона, которое лежит выше аксовазального синапса и называется накопительным тельцем Геринга. При необходимости отсюда он поступает в синапс, а затем в кровь. Органами-мишенями вазопрессина являются почки и артерии. В почках гормон усиливает обратную реабсорбцию воды (в канальцах нефрона и собирательных трубочках) и тем самым уменьшает объем мочи, способствуя задержке жидкости в организме и повышения артериального давления. В артериях гормон вызывает сокращение гладких миоцитов мышечной оболочки и повышение артериального давления.

Паравентрикулярные ядра наряду с крупными пептидхолинергическими нейронами содержат также мелкие пептидадренергические. Первые вырабатывают гормон окситоцин, который поступает по аксонам в тельца Геринга задней доли гипофиза. Окситоцин вызывает синхронное сокращение мускулатуры матки во время родов и активирует миоэпителиоциты молочной железы, что усиливает выделение молока во время кормления ребенка.

Средний гипоталамус содержит ряд ядер состоящих из мелких нейросекреторных пептидадренергических нейронов. Наиболее важны аркуатное и вентромедиальное ядра, образующие так называемый аркуатно-медиобазальный комплекс. Нейросекреторные клетки этих ядер вырабатывают аденогипофизотропные гормоны, регулирующие функцию аденогипофизарилизинг-гормоны. Гипофизотропные рилизинг - гормоны являются олигопептидами и подразделяются на две группы: либерины, усиливающие секрецию гормонов аденогипофизом, и статины, тормозящие ее. Из либеринов выделены гонадолиберин, кортиколиберин, соматолиберин. В то же время, описаны только два статина: соматостатин, который подавляет синтез гипофизом гормона роста, адренокортикотропина и тиреотропина, и пролактиностатин.

Задний гипоталамус включает маммилярные тела и перифорникальное ядро. Этот отдел не относится к эндокринному, он регулирует содержание глюкозы и ряд поведенческих реакций.

Строение гипофиза

Аденогипофиз развивается из эпителия крыши ротовой полости, имеющей эктодермальное происхождение. На 4-й неделе эмбриогенеза образуется эпителиальное выпячивание этой крыши в виде кармана Ратке. Проксимальный отдел кармана редуцируется, и ему навстречу выпячивается дно 3 желудочка, из которого образуется задняя доля. Из передней стенки кармана Ратке образуется передняя доля, из задней - промежуточная. Соединительная ткань гипофиза формируется из мезенхимы.

Функции гипофиза:

· регуляция деятельности аденогипофиззависымых эндокринных желез;

· накопление для нейрогормонов гипоталамуса вазопрессина и окситоцина;

· регуляция пигментного и жирового обмена;

· синтез гормона, регулирующего рост организма;

· выработка нейропептидов (эндорфинов).

Гипофиз представляет собой паренхиматозный орган со слабым развитием стромы. Он состоит из аденогипофиза и нейрогипофиза. Аденогипофиз включает три части: переднюю, промежуточную доли и туберальную часть.

Передняя доля состоит из эпителиальных тяжей трабекул, между которыми проходят фенестрированные капилляры. Клетки аденогипофиза называются аденоцитами. В передней доле их 2 вида :

· Хромофильные аденоциты располагаются по периферии трабекул и содержат в цитоплазме гранулы секрета, которые интенсивно окрашиваются красителями и делятся на:

· оксифильные

· базофильные.

Оксифильные аденоциты делятся на две группы :

· соматотропоциты вырабатывают гормон роста (соматотропин), стимулирующий деление клеток в организме и его рост;

· лактотропоциты вырабатывают лактотропный гормон (пролактин, маммотропин). Этот гормон усиливает рост молочных желез и секрецию ими молока во время беременности и после родов, а также способствует образованию в яичнике желтого тела и выработке им гормона прогестерона.

Базофильные аденоциты подразделяются также на два вида:

· тиротропоциты - вырабатывают тиреотропный гормон, этот гормон стимулирует выработку щитовидной железой тиреоидных гормонов;

· гонадотропоциты подразделяются на два вида - фоллитропоциты вырабатывают фолликулостимулирующий гормон, в женском организме он стимулирует процессы овогенеза и синтез женских половых гормонов эстрогенов. В мужском организме фолликулостимулирующий гормон активирует сперматогенез. Лютропоциты вырабатывают лютеотропный гормон, который в женском организме стимулирует развитие желтого тела и секрецию им прогестерона.

Еще одна группа хромофильных аденоцитов - адренокортикотропоциты. Они лежат в центре передней доли и вырабатывают адренокортикотропный гормон, стимулирующий секрецию гормонов пучковой и сетчатой зонами коры надпочечников. Благодаря этому адренокортикотропный гормон участвует в адаптации организма к голоданию, травмам, другим видам стресса.

Хромофобные клетки сосредоточены в центре трабекул. Эта неоднородная группа клеток, в которой выделяют следующие разновидности:

· незрелые, малодифференцированные клетки, играющие роль камбия для аденоцитов;

· выделившие секрет и потому не окрашивающиеся в данный момент хромофильные клетки;

· фолликулярно-звездчатые клетки - небольших размеров, имеющие небольшие отростки, при помощи которых они соединяются друг с другом и образуют сеть. Функция их не ясна.

Средняя доля состоит из прерывистых тяжей базофильных и хромофобных клеток. Имеются кистозные полости, выстланные реснитчатым эпителием и содержащие коллоид белковой природы, в котором отсутствуют гормоны. Аденоциты промежуточной доли вырабатывают два гормона:

· меланоцитостимулирующий гормон, он регулирует пигментный обмен, стимулирует выработку меланина в коже, адаптирует сетчатку в видению в темноте, активирует кору надпочечников;

· липотропин, который стимулирует жировой обмен.

Туберальная зона образована тонким тяжом эпителиальных клеток, окружающих эпифизарную ножку. В туберальной доле проходят гипофизарные портальные вены, соединяющие первичную капиллярную сеть медиального возвышения с вторичной капиллярной сетью аденогипофиза.

Задняя доля или нейрогипофиз имеет нейроглиальное строение. В ней гормоны не вырабатываются, а лишь накапливаются. Сюда поступают по аксонам и депонируются в тельцах Геринга вазопрессин и окситоциннейрогормоны переднего гипоталамуса. Состоит нейрогипофиз из эпендимных клеток - питуицитов и аксонов нейронов паравентрикулярных и супраоптических ядер гипоталамуса, а также кровеносных капилляров и телец Геринга - расширений аксонов нейросекреторных клеток гипоталамуса. Питуициты занимают до 30 % объема задней доли. Они имеют отростчатую форму и образуют трехмерные сети, окружая аксоны и терминали нейросекреторных клеток. Функциями питуицитов является трофическая и поддерживающая функции, а также регуляция выделения нейросекрета из терминалей аксонов в гемокапилляры.

Кровоснабжение аденогипофиза и нейрогипофиза изолированное. Аденогипофиз кровоснабжается из верхней гипофизарной артерии, которая вступает в медиальную эминенцию гипоталамуса и распадается на первичную капиллярную сеть. На капиллярах этой сети заканчиваются аксовазальными синапсами аксоны нейросекреторных нейронов медиобазального гипоталамуса, вырабатывающих рилизинг-факторы. Капилляры первичной капиллярной сети и аксоны вместе с синапсами образуют первый нейрогемальный орган гипофиза. Затем капилляры собираются в портальные вены, которые идут в переднюю долю гипофиза и там распадаются на вторичную капиллярную сеть фенестрированного или синусоидного типа. По ней рилизинг-факторы достигают аденоцитов и сюда же выделяются гормоны аденогипофиза. Эти капилляры собираются в передние гипофизарные вены, которые несут кровь с гормонами аденогипофиза к органам-мишеням. Поскольку капилляры аденогипофиза лежат между двумя венами (портальной и гипофизарной), они относятся к "чудесной" капиллярной сети. Задняя доля гипофиза кровоснабжается нижней гипофизарной артерией. Эта артерия распадается до капилляров, на которых образуются аксовазальные синапсы нейросекреторных нейронов - второй нейрогемальный орган гипофиза. Капилляры собираются в задние гипофизарные вены.

Строение эпифиза

Эпифиз расположен между передними буграми четверохолмия. В эмбриогенезе образуется на 5-6-й неделе внутриутробного развития, как выпячивание крыши промежуточного мозга.

Строение эпифиза

Эпифиз - паренхиматозный дольчатый орган. Снаружи покрыт капсулой из рыхлой волокнистой соединительной ткани, от которой отходят септы, разделяющие эпифиз на дольки. Паренхима долек образована анастомозирующими клеточными тяжами, островками и фолликулами и представлена клетками двух типов: пинеалоцитами и глиоцитами. Пинеалоциты составляют до 90 % клеток. Глиоциты эпифиза, относящиеся, очевидно, к астроглии, составляют до 5 % всех клеток паренхимы. Они распределены по всей паренхиме дольки, иногда формируя группы по 3-4 клетки. Функция глиоцитов - опорная, трофическая, регуляторная.

Наиболее активно эпифиз функционирует в молодом возрасте. При старении орган уменьшается, в нем могут откладываться в виде кристаллов фосфаты и карбонаты кальция, которые связаны с органическим матриксом разрушенных клеток (эпифизарный песок).

Эпифиз синтезирует следующие гормоны:

· Серотонин и мелатонин регулируют "биологические часы" организма. Гормоны являются производными аминокислоты триптофана. Вначале из триптофана синтезируется серотонин, а из последнего образуется мелатонин. Он является антагонистом меланоцитостимулирующего гормона гипофиза, продуцируется в ночное время, тормозит секрецию гонадолиберина, тиреоидных гормонов, гормонов надпочечников, гормона роста, настраивает организм на отдых. У мальчиков содержание мелатонина снижается при половом созревании. У женщин наибольший уровень мелатонина определяется в менструацию, наименьший - при овуляции. Продукция серотонина существенно преобладает в дневное время. При этом солнечный свет переключает эпифиз с образования мелатонина на синтез серотонина, что ведет к пробуждению и бодрствованию организма (серотонин является активатором многих биологических процессов).

· Около 40 гормонов пептидной природы , из которых наиболее изучены:

· гормон, регулирующий обмен кальция;

· гормон аргинин-вазотоцин, регулирующий тонус артерий и угнетающий секрецию гипофизом фолликулостимулирующего гормона и лютеинизирующего гормона.

Показано, что гормоны эпифиза подавляют развитие злокачественных опухолей. Свет составляет функцию эпифиза, а темнота стимулирует его. Выявлен нейронный путь: сетчатка глаза - ретиногипоталамический тракт - спинной мозг - симпатические ганглии - эпифиз.

Таким образом, функциональная активность наиболее выражена в детском возрасте. В это время он предотвращает преждевременное половое созревание, позволяя организму ребенка окрепнуть физически. Функции эпифиза подавляются световым воздействием. Очевидно, избыточная инсоляция тормозит угнетающее действие эпифиза на гонады, чем и объясняется более раннее половое созревание детей в южных странах.

Строение надпочечников

Функции надпочечников:

· выработка минералокортикоидов (альдостерона, дезоксикортикостерона ацетата и других), регулирующих водно-солевой обмен, а также активирующих воспалительные и иммунные реакции. Минералокортикоиды стимулируют реабсорбцию натрия почками, что ведет к задержке в организме воды и повышению артериального давления;

· выработка глюкокортикоидов (кортизола, гидрокортизона и других). Эти гормоны повышают уровень глюкозы в крови за счет синтеза ее из продуктов распада жиров и белков. Гормоны подавляют воспалительные и иммунные реакции, что используется в медицине для лечения аутоиммунных, аллергических реакций и так далее;

· выработка половых гормонов, в основном андрогенов (дегидроэпиандростерона и андростендиона), которые имеют слабо выраженный андрогенный эффект, но выделяясь при стрессе, стимулируют рост мускулатуры. Выработку и секрецию андрогенов стимулирует адренокортикотропный гормон;

· мозговое вещество продуцирует катехоламины - гормон адреналин и нейромедиатор норадреналин, которые вырабатываются при стрессе.

Таким образом, надпочечники являются жизненно важными органами, их полное удаление или разрушение патологическим процессом приводит к несовместимым с жизнью изменениям и смерти.

Надпочечники являются парными паренхиматозными органами зонального типа. Снаружи покрыты капсулой из плотной волокнистой неоформленной ткани, от которой отходят прослойки вглубь органа - трабекулы. В капсуле находятся гладкие миоциты, вегетативные ганглии, скопления жировых клеток, нервы, сосуды. Капсула и прослойки рыхлой волокнистой неоформленной соединительной ткани образуют строму органа. Паренхима представлена совокупностью клеток: кортикоцитов в корковом веществе и хромаффиноцитов в мозговом.

Надпочечники отчетливо подразделяются на две структурно и функционально различные зоны:

· корковое вещество состоит из нескольких зон:

· субкапсулярная зона образована мелкими малодифференцированными кортикоцитами, играющими роль камбия для коры;

· клубочковая зона составляет 10 % коры надпочечников.Образована небольшими кортикоцитами, формирующими клубочки. В них умеренно развита гладкая эндоплазматическая сетьместо синтеза кортикостероидных гормонов. Функции клубочковой зоны выработка минералокортикоидов, а если говорить точнее, то в этой зоне происходит только завершающий этап биосинтеза минералокортикоидов из их предшественника кортикостерона, который поступает сюда из пучковой зоны;

· пучковая зона - это наиболее выраженная зона коры надпочечников.Образована оксифильными кортикоцитами крупных размеров, формирующими тяжи и пучки. Между пучками в тонких прослойках рыхлой волокнистой соединительной ткани лежат синусоидные капилляры. Различают два вида пучковых кортикоцитов: темные и светлые. Это один тип клеток, находящихся в разных функциональных состояниях. Функция пучковой зоны - выработка глюкортикоидов (преимущественно кортизола и кортизона).

· сетчатая зона занимает около 10-15 % всей коры. Состоит из мелких клеток, которые лежат в виде сети. В сетчатой зоне образуются глюкортикоиды и мужские половые гормоны, в частности, андростендион и дегидроэпиандростерон, а также в небольшом количестве женские половые гормоны (эстрогены и прогестерон). Андрогены коры надпочечников, в отличие от андрогенов половых желез, обладают слабо выраженным андрогенным эффектом, однако их анаболический эффект на скелетную мускулатуру сохранен, что имеет важное адаптивное значение.

Гормоны надпочечников являются жирорастворимыми веществами и легко преодолевают клеточную оболочку, поэтому в кортикоцитах секреторные гранулы отсутствуют.

· Мозговое вещество отделяется от коркового тонкой капсулой из рыхлой волокнистой соединительной ткани. Оно образовано скоплением клеток хромаффиноцитов, которые хорошо окрашиваются солями хрома.

Эти клетки делятся на два вида:

· крупные светлые клетки-продуценты гормона адреналина (А-клетки), содержащие в цитоплазме умеренно электронноплотные гранулы;

· темные мелкие хроматоффиноциты (НА-клетки), содержащие большое число плотных гранул, они секретируют норадреналин.

В мозговом веществе обнаруживаются также вегетативные нейроны (ганглиозные клетки) и опорные клетки - разновидность нейроглии. Своими отростками они окружают хромаффиноциты.

Кровоснабжение надпочечников

Артерии, входящие в капсулу, распадаются до артериол, образующих густую субкапсулярную сеть, и капилляров фенестрированного и синусоидного типа, снабжающих кровью кору. Из сетчатой зоны капилляры проникают в мозговое вещество, где превращаются в широкие синусоиды, сливающиеся в венулы. Венулы переходят в вены, формирующие венозное сплетение мозгового вещества. Из подкапсулярной сети в мозговое вещество проникают также артериолы, распадающиеся в нем до капилляров.

Надпочечники - парные эндокринные железы, которые располагаются около верхнего полюса правой и левой почки в забрюшинном пространстве. Как правило, правой надпочечник треугольной формы, а левый имеет форму полумесяца. Основная функция надпочечников, это регуляция обмена веществ и адаптация организма человека к стрессовым ситуациям.

В надпочечниках разделяют две основные анатомические зоны – корковое вещество надпочечника и мозговое вещество надпочечника.

Корковое вещество надпочечника отвечает за выработку гормонов, которые относятся к группе кортикостероидов.

В корковом веществе надпочечников выделяют три зоны: наружная зона - клубочковая, которая находится сразу под капсулой надпочечника, далее пучковая зона надпочечника и сетчатая зона надпочечника, которая окружает мозговой слой.

Гормоны клубочковой зоны коры надпочечника – менералокортикоиды

Главный представитель – альдостерон. Основной функцией гормона альдостерона, является секреция ионов калия в мочу и обратное всасывание ионов натрия в кровь в почках.

Гормоны пучковой зоны коры надпочечника – глюкокортикоиды

Главный представитель – кортизол. Кортизол оказывает свое влияние почти на все обменные процессы в человеческом организме – на метаболизм жира, углеводов, белков. Влияет на сердечно-сосудистую систему, почки, деятельность центральной нервной системы.

Гормоны сетчатой зоны коры надпочечника – половые гормоны, андрогены

Основным представителем является дегидроэпиандростерон (ДГЭАС), который стимулирует синтез белка, увеличивает мышечную массу и сократительную способность мышц.

Мозговой слой надпочечников

Мозговой слой находится в центре надпочечника и составляет не более 10 % от его массы. Важно отменить, что мозговой слой надпочечника и корковый слой надпочечника, являются полностью разными структурами по происхождению. Корковый слой надпочечника имеет эктодермальное происхождение. Мозговой слой надпочечника происходит из первичного нервного гребешка.

Клетки мозгового вещества надпочечников синтезируют катехоламины – норадреналин и адреналин.

Основная функция гормонов мозгового слоя надпочечников – повышение артериального давления, усиление работы сердца, расширение просвет бронхов, влияние на обменные процессы в организме.

Кровоснабжение надпочечников

Хорошее кровоснабжение надпочечников важно для оптимальной работы всего организма человека. Каждый надпочечник кровоснабжается из верхней, средней и нижней надпочечниковых артерий, которые в свою очередь отходят то нижней диафрагмальной артерии, абдоминальной части аорты и почечной артерии. Венозная система надпочечников образует центральную вену, которая впадает в нижнюю полую вену от правого надпочечника, от левого надпочечника впадает в левую почечную вену.

Иннервация надпочечников

Надпочечники имеют большое количество нервных волокон. Иннервация надпочечников происходит из брюшного и грудного нервного сплетения. Нервные окончания в большей степени иннервируют мозговой слой надпочечников, а так же частично кортикальный слой.

Нервная система, как и эндокринная, осуществляет свои функции путем секреции химических соединений (гормонов или нейротрансмиттеров), эффекты которых реализуются через поверхностные рецепторы клеток-мишеней.
Функция автономных нервов не контролируется сознанием. Они иннервируют сердце и гладкие мышцы множества внутренних органов, регулируют кровоток, артериальное давление, частоту сердечных сокращений и сердечный выброс. Две главные группы автономных нервов различаются своей локализацией. Парасимпатические преганглионарные волокна берут начало в головном мозге и крестцовом
отделе спинного мозга. Симпатические преганглионарные волокна находятся в составе нервов, выходящих из грудного и поясничного отделов спинного мозга. Симпатическая нервная система координирует автоматические реакции «борьбы и бегства», приводя к повышению артериального давления и сердечного выброса и расширению зрачков.
Преганглионарные симпатические волокна оканчиваются в основном в пара- и превертебральных ганглиях («параганглиях»), которые содержат нейроэндокринные хромаффинные клетки, по строению и иммуногистохимическому окрашиванию сходные с клетками мозгового вещества надпочечников. Нехромаффинные параганглии в наибольшем количестве локализованы в месте бифуркации сонных артерий (каротидных тельцах, или сонных гломусах). Параганглии часто располагаются в средостении, особенно вблизи предсердий, и по ходу симпатической цепочки в области живота. Абдоминальных параганглиев особенно много вокруг чревного ствола, надпочечников, мозгового вещества почек и бифуркации аорты (орган Цуккеркандля). Параганглиомы часто локализуются также в области таза, особенно вблизи мочевого пузыря. Преганглионарные волокна оканчиваются и в мозговом веществе надпочечников, которое можно рассматривать в качестве особого симпатического ганглия. Преганглионарные симпатические волокна выделяют ацетилхолин и поэтому называются холинергическими. Постсинаптические волокна берут начало в параганглиях и иннервируют различные ткани, выделяя в тканевых синапсах норадреналин. Клетки феохромоциты, будучи аналогом постганглионарных волокон, секретируют в основном адреналин, который поступает прямо в кровь. Таким образом, кровоток можно представить себе в виде гигантского синапса, соединяющего адреналин с адренорецепторами всех тканей. Симпатическую нервную систему называют также адренергической.
Мозговое вещество надпочечников не является жизненно важным органом. Однако секреция им адреналина и других соединений способствует сохранению гомеостаза организма при стрессе. Изучение мозгового вещества надпочечников и симпатической нервной системы привело к открытию различных катехоламиновых рецепторов и синтезу множества их агонистов и антагонистов, которые широко используются в клинической практике.
Опухоли мозгового вещества надпочечников называют феохромоцитомами, а те, которые развиваются из вненадпочечниковых симпатических ганглиев, - параганглиомами. Эти опухоли могут секретировать избыточные количества адреналина или норадреналина, что создает угрозу для жизни.

Исторический очерк

Тот факт, что мозговое вещество надпочечников отличается от коркового, получил признание только в начале XIX века. Френкель (Frenkel) в 1886 г. первым описал случай внезапной смерти 18-летней девушки, страдавшей ретинитом, приступами сердцебиений и головных болей, сопровождавшимися бледностью и рвотой. При аутопсии были обнаружены двусторонние опухоли надпочечников, гипертрофия желудочков сердца и нефросклероз.
В 1896 г. Манассе (Manasse) показал, что соли хрома окрашивают мозговое вещество надпочечников и соответствующие опухоли в темно-коричневый цвет. Поэтому ткани, окрашивающиеся этими солями, стали называть хромаффинными.
В 1901 г. два исследователя независимо друг от друга установили, что вещество, окрашивающееся солями хрома, представляет собой 3,4-дигидроксифенил-2-метиламиноэтанол. Дж. Такамине (Takamine) дал ему имя адреналин (от латинского названия надпочечников), а Т. Б. Олдрич - эпинефрин (от греческого названия тех же желез). Эллиотт (Elliott) в 1904 г. первым предположил гормональную передачу нервных импульсов.
В 1908 г. Алезаис (Alezais) и Пейронин (Peyronin) предложили термин «параганглио-ма» для хромаффинных опухолей параганглиев, а в 1912 г. Пик (Pick) впервые использовал слово «феохромоцитома», образованное от греческих «phaios» (темный), «спготпа» (цвет) и «kytos» (клетка). Это название отражало цвет, приобретаемый опухолевой тканью при обработке некоторыми фиксаторами. Смеси бихроматов (например, жидкости Ценкера, Хелли, Орта) придают клеткам, содержащим нейросекреторные гранулы, желтовато-коричневый цвет. Клетки с адреналином становятся темно-коричневыми, а с норадреналином - бледно-желтыми. При окраске слабым раствором красителя Гимза-Шморль ткань феохромоцитомы приобретает зеленый цвет. Эти способы окрашивания представляют в основном исторический интерес, поскольку в настоящее время для гистологического исследования феохромоцитом и параганглием используют, главным образом, иммуногистохими-ческие реакции на хромогранин А (ХгА) и синапто-физин, присутствующие в таких опухолях.
В 1921 г. в опытах на лягушках было установлено, что периферическим симпатическим нейро-трансмиттером является адреналин. В течение последующих 25 лет ошибочно полагали, что адреналин участвует в передаче нервных симпатических импульсов и у человека.
Первые успешные хирургические резекции феохромоцитом были выполнены в 1926 г. Ч.Х. Мейо в США и Ру в Швейцарии. В 1929 г. Рабин обнаружил присутствие в феохромоцитоме прессорного вещества, что могло объяснить клинические проявления этой опухоли. Однако доказательство высокого уровня адреналина в крови больных с фео-хромоцитомой было получено только в 1939 г.
В 1946 г. Ульф фон Эйлер (Ulf von Euler) установил присутствие в сердце норадреналина и доказал, что именно норадреналин (а не адреналин) играет роль нейротрансмиттера в симпатической нервной системе. У здоровых людей практически весь норадреналин, присутствующий в сыворотке, поступает туда из синаптических щелей симпатических нервов. Концентрация норадреналина в сыворотке подчиняется суточному ритму. Уровень норадреналина, низкий при горизонтальном положении тела, возрастает сразу же после вставания и остается повышенным, пока сохраняется вертикальное положение. Содержание норадреналина в сыворотке увеличивается и при воздействии холода, что отражает необходимость повышения симпатической активности для поддержания нормального артериального давления при вертикальном положении и температуры «ядра» тела при охлаждении. Выяснилось, что симпатический (адренергический) отдел автономной нервной системы необходим для мобилизации ресурсов организма (реакции «борьбы или бегства») в кризисных ситуациях.

{module директ4}

В 1948 г. Алквист (Alquist), сравнив величину эффектов адреналина, норадреналина и изопротере-нола, предположил существование двух групп мембранных белков - адренорецепторов, которые он назвал а- и Р-адренорецепторами. В дальнейшем среди них были выделены α 1A -, α 1В -, α 1С -, α 2A -, α 2В -, α 2С -, β 1 -, β 2 -, β 3 -, β 4 -подтипы. Эти рецепторы по-разному распределены в ЦНС и периферических тканях.
В 1950 г. фон Эйлер и Энгель (Engel) обнаружили повышенную экскрецию адреналина и норадреналина с мочой у больных с феохромоцитомами, а после того, как Армстронг показал, что метаболитом катехоламинов является ванилилминдальная кислота (ВМК), именно ее экскрецию начали использовать в качестве диагностического показателя феохромоцитомы. В 1958 г. Лабросс (LaBrosse) выявил присутствие в моче норметанефрина. В 1970 г. фон Эйлер был удостоен Нобелевской премии за пионерские исследования в области запасания, секреции и инактивации катехоламинов.

Анатомия


Эмбриология

Симпатическая нервная система развивается у плода из примитивных клеток нервного валика (симпатогоний). Примерно на пятой неделе внутриутробной жизни эти клетки мигрируют из первичных спинальных ганглиев в грудную область, образуя симпатическую цепочку позади аорты. Затем они перемещаются вперед, формируя остальные симпатические ганглии.
На 6-й неделе внутриутробной жизни группы этих первичных клеток мигрируют вдоль центральной вены и проникают в кору надпочечников плода, образуя их мозговое вещество, которое удается различить на 8-й неделе. Мозговое вещество надпочечников в это время состоит из симпатогоний и феохромобластов, созревающих в дальнейшем в феохромоциты. Они формируют розеткообразные структуры с примитивными клетками в центре. На 12-й неделе при электронной микроскопии в этих клетках обнаруживаются плотные гранулы. У новорожденных мозговое вещество занимает очень небольшое место в ткани надпочечников и выглядит аморфным, но к 6 месяцам постнатальной жизни приобретает зрелый вид.
Феохромобласты и феохромоциты скапливаются также по обеим сторонам аорты, образуя параганглии. Основные скопления этих клеток обнаруживаются на уровне нижней брыжеечной артерии и бифуркации аорты. Сливаясь, они образуют орган Цуккеркандля, отчетливо видимый у плода. Считается, что именно этот орган служит основным источником катехоламинов в первый год жизни; затем он атрофируется. Феохромоциты (хромаффинные клетки) присутствуют также в абдоминальном симпатическом сплетении и других отделах симпатической нервной системы.

Макроскопическое строение
Анатомические связи между корковым и мозговым веществами надпочечников неодинаковы у разных видов. У акул эти органы полностью разделены. У амфибий они уже тесно контактируют друг с другом, а у птиц их клетки составляют единый орган. У человека мозговое вещество надпочечников занимает центральное положение в самой широкой части железы, и лишь немногие клетки проникают в более узкие части надпочечников. Масса мозгового вещества обоих надпочечников у взрослых составляет примерно 1000 мг (около 15% общей массы двух надпочечников), хотя ее доля у разных людей может быть разной. Четкая граница между корковым и мозговым веществом отсутствует. Клетки коркового вещества обычно окружают центральную вену в мозговом веществе и образуют в его толще небольшие островки.

Микроскопическое строение
Хромаффинные клетки, или феохромоциты, мозгового вещества надпочечников имеют форму крупных удлиненных овалов. Они располагаются в виде сети, альвеол или тяжей вокруг многочисленных капилляров и венозных синусов, куда поступает кровь из коркового вещества. Феохромоциты содержат крупные ядра и развитый аппарат Гольджи. В их цитоплазме присутствует большое число пузырьков, или гранул диаметром 100-300 нм, сходных с нейросекреторными гранулами периферических симпатических нервов. Катехоламины (адреналин и/или норадреналин) составляют примерно 20% массы нейросекреторных пузырьков. Пузырьки, содержащие норадреналин, выглядят темнее содержащих адреналин. В этих пузырьках присутствуют также белки, липиды, АТФ, а также хромогранины, нейропептид Y, энкефалины и проопиомеланокортин (вместе с АКТГ и β-эндорфином).

Иннервация
Клетки мозгового вещества надпочечников иннервируются преганглионарными симпатическими волокнами, которые выделяют ацетилхолин и энкефалины. Большинство этих волокон начинается в подкапсульном сплетении на задней поверхности надпочечников и, не прерываясь, проникает в них в виде пучков (по 30-50 волокон). Пучки преганглионарных волокон тянутся вдоль сосудов и достигают мозгового вещества, не разветвляясь в корковом. Некоторые волокна оканчиваются в стенке центральной вены. Однако большинство этих волокон оканчивается на феохромоцитах.

Кровоснабжение
Надпочечники человека получают кровь из верхней, средней и нижней надпочечниковых ветвей нижней диафрагмальной артерии, непосредственно из аорты и из почечных артерий. Под капсулой надпочечников сосуды образуют сплетение, питающее корковое вещество. Некоторые сосуды проникают прямо в мозговое вещество. Однако основное кровоснабжение клеток мозгового вещества осуществляется, по-видимому, сосудами портальной системы, берущими начало в капиллярах коркового вещества. Вокруг центральной вены надпочечников располагается также сплетение лимфатических капилляров.
У млекопитающих кортизол индуцирует синтез фермента, катализирующего превращение норадреналина в адреналин (фенилэтаноламин-N-метилтрасферазы, ФЭМТ). Хромаффинные клетки, содержащие адреналин, питаются в основном кровью сосудов, дренирующих корковое вещество, тогда как клетки, содержащие норадреналин, снабжаются артериями, проникающими непосредственно в мозговое вещество.
Короткая центральная вена правого надпочечника впадает прямо в нижнюю полую вену. Центральная вена левого надпочечника (несколько более длинная) впадает в левую почечную вену.

Шишковидное тело

Шишковидное тело, corpus pineale, располагается над верхними холмиками пластинки крыши среднего мозга, будучи связано с таламусами посредством habenulae. Оно представляет небольшое, овальной формы и красноватой окраски тело, более узкий конец которого направлен вниз и назад. Длинник тела 7 - 10 мм, поперечник 5 - 7 мм. Группирующиеся в виде тяжей клетки имеют секреторные свойства. Шишковидное тело крупнее в раннем детстве (у женщин также крупнее, чем у мужчин), но еще до наступления половой зрелости обнаруживаются явления инволюции, первые признаки которой заметны уже на 7-м году жизни.

Функция. Функция шишковидного тела не вполне выяснена. Экстирпация железы у молодых животных влечет за собой быстрый рост скелета с преждевременным и преувеличенным развитием половых желез и вторичных половых признаков. Поэтому нужно думать, что железа оказывает тормозящее действие на эти функции.

Развитие. Шишковидное тело развивается в виде первоначально полого выроста из верхней стенки промежуточного мозга (будущего III желудочка).

Сосуды и нервы. К шишковидному телу подходит несколько веточек от а. chorioidea posterior (ветвь а. cerebri posterior), а. cerebelli и a. cerebri media. Симпатические волокна, входящие в corpus pineale, предназначены, по-видимому, для иннервации кровеносных сосудов.

Надпочечник

Надпочечник, glandula suprarenalis s. adrenalis, - парный орган, лежит в забрюшинной клетчатке над верхним концом соответствующей почки. Масса надпочечника около 4 г; с возрастом значительного увеличения надпочечника не наблюдается. Размеры: вертикальный - 30 - 60 мм, поперечный - около 30 мм, переднезадний - 4 - 6 мм. Наружная окраска желтоватая или коричневатая. Правый надпочечник своим нижним заостренным краем охватывает верхний полюс почки, левый же прилежит не столько к полюсу почки, сколько к ближайшему к полосу отделу внутреннего края почки.

На передней поверхности надпочечников заметна одна или несколько борозд - это ворота, hilus, через которые выходит надпочечниковая вена и входят артерии.

Строение. Надпочечник покрыт фиброзной капсулой, посылающей в глубь органа отдельные трабекулы. Надпочечник состоит из двух слоев: коркового, желтоватого цвета, и мозгового, более мягкого и более темной буроватой окраски. По своему развитию, структуре и функции эти два слоя резко отличаются друг от друга.

Корковое вещество состоит из трех зон, которые вырабатывают различные гормоны. Мозговое вещество состоит из клеток, вырабатывающих адреналин и норадреналин. Эти клетки интенсивно окрашиваются хромовыми солями в желто-бурый цвет (хромаффинные). Оно содержит также большое количество безмиелиновых нервных волокон и ганглиозных (симпатических) нервных клеток.



Развитие. Корковое вещество относится к так называемой интерренальной системе, происходящей из мезодермы, между первичными почками (откуда и название системы).

Мозговое же вещество происходит из эктодермы, из симпатических элементов (которые затем разделяются на симпатические нервные клетки и хромаффинные клетки). Это как называемая адреналовая, или хромаффинная, система. Интерренальная и хромаффинная системы у низших позвоночных независимы друг от друга, у высших млекопитающих и человека они сочетаются в один анатомический орган - надпочечник.

Функция. Соответственно строению из двух разнородных веществ - коркового и мозгового - надпочечник как бы сочетает в себе функции двух желез. Мозговое вещество выделяет в кровь норадреналин и адреналин (получен в настоящее время и синтетическим путем), поддерживающий тонус симпатической системы и обладающий сосудосуживающими свойствами.

Корковое вещество является главным местом производства липидов (особенно лецитина и холестерина) и, по-видимому, участвует в нейтрализация токсинов, получающихся в результате мышечной работы и усталости.

Имеются указания также, что корковое вещество надпочечников выделяет гормоны (стероиды), влияющие на водно-солевой, белковый и углеводный обмен, и особые гормоны, близкие мужским (андрогены) и женским (эстрогены) половым гормонам.

Совместному действию обеих частей надпочечника способствуют их общие кровоснабжение и иннервация. В частности, расслабление сфинктеров, имеющихся в надпочечниковых венах, приводит к одновременному поступлению в общую циркуляцию как медуллярных, так и кортикальных гормонов.

Сосуды и нервы. Надпочечники получают три пары артериальных ветвей: верхние надпочечниковые артерии (от a. phrenica inferior), средние (от aorta abdominalis) и нижние (от а. renalis). Bсе они, анастомозируя между собой, образуют сеть в капсуле надпочечников. Вeнозная кpовь, проходя через широкие венозные капилляры (синусоиды) мозгового слоя, оттекает обычно через один ствол, v.suprarenalis (centralis), выходящий из ворот надпочечника и впадающий справа в v.cava inferior, а слева (более длинный ствол) в v.renalis sinistra. Лимфатические сосуды направляются к лимфатическим узлам, лежащим у аорты и нижней полой вены.

Нервы идут от n.splanchnicus major (через plexus coeliacus и plexus renalis).

4.64. Понятия об органах иммунной системы, их классификация. Закономерности их строение. Понятие об иммунной реакции.

Органы иммунной системы обеспечивают защиту организма (иммунитет) от генетически чужеродных клеток и веществ, поступающих из вне или образующихся в организме. Они классифицируются на: центральные – вилочковая железа (тимус); периферические – костный мозг, лимфатические узлы, селезенка, лимфоидные узелки подвздошной кишки и червеобразного отростка, дыхательной системы, стенок полых органов.

Вилочковая железа, thymus, покрыта капсулой, которая вовнутрь железы отдает междольковые перегородки. Долька состоит из мозгового и коркового вещества. Корковое вещество образовано сетью эпителиальных клеток, в петлях которых лежат лимфоциты – Т (тимоциты). В мозговом веществе эпителиальные клетки уплощаются и ороговевают, образуя тельца тимуса. Функции: Т – лимфоциты приобретают в тимусе защитные свойства за счет гормона, который вырабатывается в эпителиальных клетках.

Костный мозг, medulla ossium, бывает двух родов: красный костный мозг и желтый костный мозг. Красный костный мозг, medulla ossium rubra имеет вид нежной красной массы, состоящей из ретикулярной ткани, в петлях которой находятся стволовые клетки, остеобласты, остеокласты; имеет красный цвет за счет кровеносных сосудов и кровяных элементов. Желтый костный мозг, medulla ossium flava, состоит главным образом из жировых клеток. Функции: кроветворение, биологическая защита; питание, развитие и рост костей.

Лимфатические узлы, nodi lymphatici, покрыты соединительнотканной капсулой, от которой внутрь отходят капсулярные трабекулы; имеются ворота, через которые проникают артерии и нервы, выходят - вены. Имеется дольчатое строение, строма состоит из ретикулярно-соединительной ткани, в петлях которой находятся лимфоциты; паренхима состоит из коркового и мозгового вещества. В корковом веществе расположены лимфатические узелки с В – лимфоцитами. Мозговое вещество – мякотные тяжи скопления В – лимфоциты. Между капсулой, трабекулами и паренхимой имеются щели – лимфатические синусы, по которым течет лимфа; в паренхиме накапливаются инородные частицы. Функции: являются органами лимфопоэза и образования антител.

Селезенка, lien, имеет собственную соединительную капсулу с примесью эластических и неисчерченных мышечных волокон. Капсула продолжается внутрь в виде перекладин, образуя остов. Между трабекулами находится пульпа селезенки с лимфатическими узелками, которая состоит из ретикулярной ткани, петли которой наполнены лейкоцитами, лимфоцитами, тромбоцитами уже распадающимися. Функция: содержит лимфоциты, участвующие в иммунологических реакциях; в пульпе осуществляется гибель отработавших клеток крови; железо эритроцитов идет в печень, где служит материалом для синтеза желчных пигментов.

Кровоснабжение надпочечников и почек общее и осуществляется тремя артериями: главной надпочечниковой артерией, снабжаемой нижней диафрагмальной артерией, средней надпочечниковой артерией, снабжаемой брюшной аортой и нижней надпочечниковой артерией, снабжаемой почечной артерией. Венозный отток надпочечников осуществляется через правую надпочечниковую вену, впадающую в нижнюю полую вену и через левую надпочечниковую вену, впадающую в левую почечную вену и нижнюю диафрагмальную вену. Надпочечниковые вены могут образовывать анастомоз с нижней диафрагмальной веной. Поскольку правая почечная вена короткая и отток происходит в нижнюю полую вену, в случае удаления правого надпочечника по разным причинам она может быть повреждена.
Надпочечники и щитовидная железа имеют наибольшее по сравнению другими органами человека кровоснабжение на грамм ткани. В каждый надпочечник могут входить до 60 артериол. По этой причине метастазы при раке легких быстрее поражают именно надпочечники.

У человека единственным минералокортикоидом, поступающим в кровь, является альдостерон. Регуляция синтеза и секреции альдостерона осуществляется преимущественно ангиотензином-II, что дало основание считать альдостерон частью ренин-ангиотензин-альдостероновой системы или регуляторной оси, обеспечивающей регуляцию водно-солевого обмена и гемодинамики. Регуляции секреции альдостерона может осуществляться и под влиянием собственной адренокортикальной ренин-ангиотензиновой системы, что объясняет частое несоответствие уровней активности ренина в плазме крови и секреции альдостерона. Поскольку альдостерон регулирует содержание в крови ионов Na+ и К+, обратная связь в регуляции его секреции реализуется прямым влиянием ионов К+ на клубочко-вую зону коры надпочечников. В ренин-ангиотензин - альдостероновой системе обратные связи включаются при сдвигах содержания Na+ в моче дистальных канальцев, объема и давления крови.. Ренин-ангиотензин-альдостероновая система. Секреция юкстагломерулярными клетками почек в кровь фермента ренина вызывает отщепление пептида ангиотензина-1 от белка плазмы крови ангиотензиногена, образуемого в печени. В сосудистом русле почек, печени, легких, мозга ангиотензин-1 подвергается воздействию превращающего фермента, вызывающего образование из ангиотензина-1 ангиотензина-2. Ангиотензин-2 стимулирует секрецию альдостерона клубочковой зоной коры надпочечников. Пунктирной стрелкой обозначена отрицательная обратная связь - подавление секреции ренина ангиотензином-2. Механизм действия альдостерона, как и всех стероидных гормонов, состоит в прямом влиянии на генетический аппарат ядра клеток со стимуляцией синтеза соответствующих РНК, активации синтеза транспортирующих катионы белков и ферментов, а также повышении проницаемости мембран для аминокислот. Негеномные эффекты гормона реализуются через системы вторичных посредников. Стимуляция всасывания натрия под влиянием альдостерона происходит не только в нефроне, но и в желудочно-кишечном тракте, протоках желез внешней секреции, желчном пузыре. Негеномные эффекты альдостерона обусловлены стимуляцией мембранного антипорта Na+/H+ в клетках разных типов (гладкие мышцы матки, эпителий дистальных канальцев почек, гладкие мышцы артерий и артериол, клетки крипт кишечника). Эти эффекты обусловлены образованием вторичного посредника диацилглицерола и активацией протеинкиназы С. Повышение уровня внутриклеточного кальция в эндотелиальных и гладкомышечных клетках сосудов под влиянием альдостерона обусловлено активацией вторичного посредника ИФЗ. Альдостерон вызывает в клетках и двукратное повышение уровня цАМФ, модулируя геномные эффекты стероидных гормонов. Быстрые негеномные эффекты альдостерона проявляются и со стороны сердечно-сосудистой системы в виде: повышения сосудистого сопротивления и артериального давления при снижении сердечного выброса, противодействия повышению в гладких мышцах сосудов уровня цАМФ и увеличения чувствительности к прессорным эффектам катехоламинов и ангиотензина II, что дало основание считать альдостерон циркуляторным гормоном стресса. Альдостерон поддерживает оптимальный водно-солевой обмен между внешней и внутренней средой организма. Одним из главных органов-мишеней гормона являются почки, где альдостерон вызывает усиленную реабсорбцию натрия в дистальных канальцах с его задержкой в организме и повышение экскреции калия с мочой. Под влиянием альдостерона происходит задержка в организме хлоридов и воды, усиленное выведение Н-ионов и аммония, увеличивается объем циркулирующей крови, формируется сдвиг кислотно-основного состояния в сторону алкалоза. Действуя на клетки сосудов и тканей, гормон способствует транспорту натрия и воды во внутриклеточное пространство. Геномный и внегеномный механизмы действия альдостерона на клетку почечного канальца. Геномный механизм: проникновение молекулы гормона через мембрану внутрь клетки, связывание с цитоплазматическим рецептором, транспорт в ядро, связывание с ядерным рецептором, активация синтеза белков (Na-транспортирующего белка-переносчика) и Na+-К+-анти-порта через люминальную мембрану. Внегеномный механизм: связывание молекулы гормона с мембранным рецептором, образование вторичных посредников (ИФЗ), фосфорилирование и активация Nа+-протонного антипорта через люминальную мембрану. Минералокортикоиды являются жизненно важными гормонами, гибель организма после удаления надпочечников можно предотвратить, вводя гормоны извне. Минералокортикоиды усиливают воспаление и реакции иммунной системы. Избыточная их продукция ведет к задержке в организме натрия и воды, отекам и повышению артериального давления, потере калия и водородных ионов, вследствие чего возникают нарушения возбудимости нервной системы и миокарда. Недостаток альдостерона у человека сопровождается уменьшением объема крови, гиперкалиемией, гипотензией, угнетением возбудимости нервной системы.

Половые стероиды коры надпочечников (эстрогены, андрогены и прогестерон) образуются в небольших количествах и сравнительно мало влияют на половые функции, однако у кастратов их физиологическое влияние возрастает.

В крови кортикостероиды (до 76%) находятся в связанном состоянии с особым белком альфа- глобулином - транскортином (гидрокортизон и кортизон) и частично с альбуминами (альдостерон), что обеспечивает их транспортировку, депонирование и защиту от разрушения. Биологически активны кортикостероиды только в свободном состоянии. Из организма стероидные гормоны в основном удаляются почками, предварительно соединяясь в печени с глюкуроновой или серной кислотами. Частично (около 1%) гидрокортизон выделяется с мочой в неизмененном виде.

По физиологическому действию в организме животных кортикостероиды делятся на две основные группы: глюкокортикоиды и минералокортикоиды. Между этими группами гормонов существует зона «функционального перекрытия», так как каждая из них частично обладает гормональной активностью другой группы.

Глюкокортикоиды в крови сельскохозяйственных животных представлены главным образом кортизолом (гидрокортизоном) и кортикостероном, которые составляют 80% от количества всех гормонов коры надпочечников. К этой же группе гормонов относятся кортизон и дегидрокортикостерон.

Из глюкокортикоидов в кровь животных поступают в основном два гормона - кортизол и кортикостерон. В крови крупного рогатого скота они составляют 99% всех глюкокортикоидов. О суммарном содержании в крови гидрокортизона и кортикостерона - основных глюкокортикоидных гормонов - ценную информацию дает определение концентрации в плазме крови 11-оксикортикостероидов (11-ОКС), которые обладают высокой активностью.

Глюкокортикоиды усиливают образование углеводов, тормозят синтез и усиливают катаболизм белков в мышцах и соединительной ткани. Поступающие при этом в печень аминокислоты служат материалом для образования углеводов (глюконеогенез). Образование и отложение гликогена в печени и мышцах увеличивается. Под влиянием глюкокортикоидов быстрее образуются и распадаются альбумины плазмы, повышается выделение аминокислот с мочой. Проникновение аминокислот в клетки и микросомы тормозится, в связи с чем снижается активность анаболических процессов в организме. Кортизол стимулирует образование ферментов, усиливающих синтез белков в печени и их распад в мышцах. Он также тормозит транспортировку глюкозы в жировые клетки и снижает синтез жира из углеводов, активирует обмен липидов, выход жирных кислот из жировой ткани и увеличивает их содержание в крови. Кортизол повышает содержание внеклеточной жидкости за счет выхода жидкости и натрия из клеток, он регулирует объем крови.

В органах пищеварения, по данным П. Ф. Солдатенкова (1976) и др., этот гормон усиливает процесс образования общих липидов и ЛЖК, а также окислительные процессы настолько, что в этих органах утилизируются ацетоновые тела, извлекаемые из крови.

Глюкокортикоиды участвуют в регуляции всех видов обмена веществ, влияют на рост и дифференцировку тканей, на состояние центральной нервной системы, многих эндокринных желез и других органов, участвуют в ответной реакции организма на действие стресс-факторов. В основном эти гормоны обеспечивают гомеостаз и адаптивные функции организма. Действие глюкокортикоидов связано с их влиянием на синтез и активность ферментов, а также повышением проницаемости клеточных мембран.