Маневр рекрутмента в педиатрической практике. Конечно-экспираторное давление (PEEP) при высокочастотной ИВЛ (ВЧС ИВЛ)


0

Одной из основных задач отделения реанимации и интенсивной терапии (ОРИТ) является обеспечение адекватной респираторной поддержки. В связи с этим, для специалистов, работающих в данной области медицины, особенно важно правильно ориентироваться в показаниях и видах искусственной вентиляции легких (ИВЛ).

Показания к искусственной вентиляции легких

Основным показанием для искусственной вентиляции легких (ИВЛ) является наличие у больного дыхательной недостаточности. Прочие показания включают длительное пробуждение пациента после анестезии, нарушения сознания, отсутствие защитных рефлексов, а также усталость дыхательной мускулатуры. Главная цель искусственной вентиляции легких (ИВЛ) - улучшить газообмен, уменьшить работу дыхания и избежать осложнений при пробуждении больного. Независимо от показания к искусственной вентиляции легких (ИВЛ), основное заболевание должно быть потенциально обратимым, в противном случае невозможно отлучение от искусственной вентиляции легких (ИВЛ).

Дыхательная недостаточность

Наиболее частым показанием для респираторной поддержки служит дыхательная недостаточность. Это состояние возникает в тех ситуациях, когда происходит нарушение газообмена, приводящее к гипоксемии. может встречаться изолированно или сочетаться с гиперкапнией. Причины дыхательной недостаточности могут быть различными. Так, проблема может возникнуть на уровне альвеолокапиллярной мембраны (отек легких), дыхательных путей (перелом ребер) и т.д.

Причины дыхательной недостаточности

Неадекватный газообмен

Причины неадекватного газообмена:

  • пневмония,
  • отек легких,
  • острый респираторный дистресс-синдром (ОРДС).

Неадекватное дыхание

Причины неадекватного дыхания:

  • повреждение грудной стенки:
    • перелом ребер,
    • флотирующий сегмент;
  • слабость дыхательной мускулатуры:
    • миастения, полиомиелит,
    • столбняк;
  • угнетение центральной нервной системы:
    • психотропные препараты,
    • дислокация ствола головного мозга.
Нарушение проходимости дыхательных путей

Причины нарушения проходимости дыхательных путей:

  • обструкция верхних дыхательных путей:
    • круп,
    • отек,
    • опухоль;
  • обструкция нижних дыхательных путей (бронхоспазм).

В ряде случаев показания к искусственной вентиляции легких (ИВЛ) трудно определить. В этой ситуации следует руководствоваться клиническими обстоятельствами.

Основные показания к искусственной вентиляции легких

Выделяют следующие основные показания к искусственной вентиляции легких (ИВЛ):

  • Частота дыханий (ЧД) >35 или < 5 в мин;
  • Усталость дыхательной мускулатуры;
  • Гипоксия - общий цианоз, SaO2 < 90% при дыхании кислородом или PaO 2 < 8 кПа (60 мм рт. ст.);
  • Гиперкапния - PaCO 2 > 8 кПа (60 мм рт. ст.);
  • Снижение уровня сознания;
  • Тяжелая травма грудной клетки;
  • Дыхательный объем (ДО) < 5 мл/кг или жизненная емкость легких (ЖЕЛ) < 15 мл/кг.

Прочие показания к искусственной вентиляции легких (ИВЛ)

У ряда больных искусственная вентиляция легких (ИВЛ) проводится в качестве компонента интенсивной терапии состояний, не связанных с патологией дыхания:

  • Контроль внутричерепного давления при черепно-мозговой травме;
  • Защита дыхательных путей ();
  • Состояние после сердечно-легочной реанимации;
  • Период после длительных и обширных хирургических вмешательств или тяжелой травмы.

Виды искусственной вентиляции легких

Наиболее частым режимом искусственной вентиляции легких (ИВЛ) является вентиляция с перемежающимся положительным давлением (intermittent positive pressure ventilation - IPPV). При этом режиме легкие раздуваются под действием положительного давления, генерируемого вентилятором, газоток доставляется через эндотрахеальную или трахеостомическую трубку. Интубацию трахеи выполняют, как правило, через рот. При продленной искусственной вентиляции легких (ИВЛ) пациенты в ряде случаев лучше переносят назотрахеальную интубацию. Тем не менее, назотрахеальную интубацию технически сложнее выполнить; кроме того, она сопровождается более высоким риском кровотечений и инфекционных осложнений (синусит).

Интубация трахеи не только позволяет проводить IPPV, но и снижает объем "мертвого пространства"; кроме того, она облегчает туалет дыхательных путей. Однако, если пациент адекватен и доступен контакту, искусственную вентиляцию легких (ИВЛ) можно проводить неинвазивным способом через плотно подогнанную носовую или лицевую маску.

В принципе, в отделении реанимации и интенсивной терапии (ОРИТ) используются два типа вентиляторов - регулируемые по заранее установленному дыхательному объему (ДО) и по давлению на вдохе. Современные аппараты искусственной вентиляции легких (ИВЛ) обеспечивают различные типы искусственной вентиляции легких (ИВЛ); с клинической точки зрения важно подобрать тот вид искусственной вентиляции легких (ИВЛ), который наиболее подходит данному конкретному пациенту.

Типы искусственной вентиляции легких

Искусственная вентиляция легких (ИВЛ) по объему

Искусственная вентиляция легких (ИВЛ) по объему осуществляется в тех случаях, когда вентилятор доставляет в дыхательные пути больного заранее установленный дыхательный объем независимо от выставленного на респираторе давления. Давление в дыхательных путях определяется податливостью (жесткостью) легких. Если легкие жесткие, давление резко повышается, что может вести к риску баротравмы (разрыва альвеол, который приводит к пневмотораксу и эмфиземе средостения).

Искусственная вентиляция легких (ИВЛ) по давлению

Искусственная вентиляция легких (ИВЛ) по давлению заключается в том, что аппарат искусственной вентиляции легких (ИВЛ) достигает заранее заданный уровень давления в дыхательных путях. Таким образом, доставляемый дыхательный объем определяется податливостью легких и сопротивлением дыхательных путей.

Режимы искусственной вентиляции легких

Контролируемая искусственная вентиляция легких (ИВЛ) (controlled mechanical ventilation - CMV)

Данный режим искусственной вентиляции легких (ИВЛ) определяется исключительно установками респиратора (давление в дыхательных путях, дыхательный объем (ДО), частоту дыхания (ЧД), отношение вдоха к выдоху - I:E). Этот режим не очень часто используется в отделениях реанимации и интенсивной терапии (ОРИТ), так как не обеспечивает синхронизации со спонтанным дыханием больного. В результате CMV не всегда хорошо переносится пациентом, что требует седатации или назначения миорелаксантов для прекращения "борьбы с вентилятором" и нормализации газообмена. Как правило, режим CMV широко применяется в операционной в ходе анестезиологического пособия.

Вспомогательная искусственной вентиляции легких (ИВЛ) (assisted mechanical ventilation - AMV)

Существует несколько режимов вентиляции, позволяющих поддержать попытки спонтанных дыхательных движений больного. При этом вентилятор улавливает попытку вдоха и поддерживает ее.
У данных режимов есть два основных преимущества. Во-первых, они лучше переносятся больным и снижают потребность в седативной терапии. Во-вторых, они позволяют сохранить работу дыхательных мышц, что предотвращает их атрофию. Дыхание больного поддерживается за счет заранее установленного давления на вдохе или дыхательного объема (ДО).

Выделяют несколько разновидностей вспомогательной вентиляции:

Перемежающаяся принудительная вентиляция (intermittent mechanical ventilation - IMV)

Перемежающаяся принудительная вентиляция (intermittent mechanical ventilation - IMV) является сочетанием спонтанных и принудительных дыхательных движений. Между принудительными вдохами больной может дышать самостоятельно, без вентиляторной поддержки. Режим IMV обеспечивает минимальную минутную вентиляцию, однако может сопровождаться значительными вариациями между принудительными и спонтанными вдохами.

Синхронизированная перемежающаяся принудительная вентиляция (synchronized intermittent mechanical ventilation - SIMV)

При этом режиме принудительные дыхательные движения синхронизируются с собственными дыхательными попытками больного, что обеспечивает ему больший комфорт.

Вентиляция с поддержкой давлением (pressure-support ventilation - PSV или assisted spontaneous breaths - ASB)

При попытке собственного дыхательного движения в дыхательные пути подается заранее установленный по давлению вдох. Этот вид вспомогательной вентиляции обеспечивает больному наибольший комфорт. Степень поддержки давлением определяется уровнем давления в дыхательных путях и может постепенно снижаться в ходе отлучения от искусственной вентиляции легких (ИВЛ). Принудительных вдохов не подается, и вентиляция целиком зависит от того, может ли больной осуществлять попытки самостоятельного дыхания. Таким образом, режим PSV не обеспечивает вентиляции легких при апноэ; в этой ситуации показано его сочетание с SIMV.

Положительное давление в конце выдоха (positive end expiratory pressure - PEEP)

Положительное давление в конце выдоха (positive end expiratory pressure - PEEP) используется при всех видах IPPV. На выдохе поддерживается положительное давление в дыхательных путях, что обеспечивает раздувание спавшихся участков легких и предотвращает ателектазирование дистальных дыхательных путей. В результате улучшаются . Тем не менее, PEEP приводит к повышению внутригрудного давления и может снизить венозный возврат, что приводит к снижению артериального давления, особенно на фоне гиповолемии. При использовании PEEP до 5-10 см вод. ст. эти отрицательные эффекты, как правило, поддаются коррекции путем инфузионной нагрузки. Постоянное положительное давление в дыхательных путях (continuous positive airway pressure - CPAP) эффективно в той же степени, что и PEEP, но применяется, главным образом, на фоне спонтанного дыхания.

Начало искусственной вентиляции легких

В начале искусственной вентиляции легких (ИВЛ) ее основной задачей является обеспечение больного физиологически необходимыми дыхательным объемом (ДО) и частотой дыхания (ЧД); их величины адаптированы к исходному состоянию больного.

Начальные установки вентилятора для искусственной вентиляции легких
FiO 2 В начале искусственной вентиляции легких (ИВЛ) 1,0, затем - постепенное снижение
PEEP 5 см вод. ст.
Дыхательный объем (ДО) 7-10 мл/кг
Давление на вдохе
Частота дыхания (ЧД) 10-15 в мин
Поддержка давлением 20 см вод. ст. (на 15 см вод. ст. выше PEEP)
I:E 1:2
Триггер потока 2 л/мин
Триггер давления От -1 до -3 см вод. ст.
"Подвздохи" Ранее предназначались для профилактики ателектазов, в настоящий момент их эффективность оспаривается
Эти установки изменяют в зависимости от клинического состояния и комфорта больного

Оптимизация оксигенации при искусственной вентиляции легких

При переводе больного на искусственную вентиляцию легких (ИВЛ), как правило, рекомендуют изначально устанавливать FiO 2 = 1,0 с последующим снижением этого показателя до той его величины, которая позволила бы поддерживать SaO 2 > 93%. В целях профилактики повреждения легких, обусловленного гипероксией, необходимо избегать поддержания FiO 2 > 0,6 в течение длительного времени.

Одним из стратегических направлений по улучшению оксигенации без повышения FiO 2 может служить увеличение среднего давления в дыхательных путях. Этого можно добиться путем повышения PEEP до 10 см вод. ст. или, при вентиляции, контролируемой по давлению, путем увеличения пикового давления на вдохе. Однако следует помнить о том, что при повышении этого показателя > 35 см вод. ст. резко возрастает риск баротравмы легких. На фоне тяжелой гипоксии () может потребоваться применение дополнительных методов респираторной поддержки, направленных на улучшение оксигенации. Одним из таких направлений служит дальнейшее увеличение PEEP > 15 см вод. ст. Кроме того, может быть использована стратегия низких дыхательных объемов (6-8 мл/кг). Следует помнить, что применение этих методик может сопровождаться артериальной гипотензией, которая наиболее часто встречается у больных, получающих массивную инфузионную терапию и инотропную / вазопрессорную поддержку.

Еще одно из направлений респираторной поддержки на фоне гипоксемии - увеличение времени вдоха. В норме отношение вдоха к выдоху составляет 1:2, при нарушениях оксигенации оно может быть изменено до 1:1 или даже 2:1. Следует помнить, что увеличение времени вдоха может плохо переноситься теми пациентами, которые требуют седации. Снижение минутной вентиляции может сопровождаться повышением PaCO 2 . Эта ситуация получила название "пермиссивная гиперкапния". С клинической точки зрения она не представляет особых проблем за исключением тех моментов, когда необходимо избежать повышения внутричерепного давления. При пермиссивной гиперкапнии рекомендуется поддерживать pH артериальной крови выше 7,2. При тяжелом ОРДС может быть использовано положение на животе, позволяющее улучшить оксигенацию путем мобилизации спавшихся альвеол и улучшения соотношения между вентиляцией и перфузией легких. Однако это положение затрудняет мониторинг за пациентом, поэтому его необходимо применять достаточно осторожно.

Улучшение элиминации углекислого газа при искусственной вентиляции легких

Выведение углекислого газа можно улучшить за счет увеличения минутного объема вентиляции. Этого можно достичь путем увеличения дыхательного объема (ДО) или частоты дыхания (ЧД).

Седация при искусственной вентиляции легких

Большинство пациентов, находящихся на искусственной вентиляции легких (ИВЛ), требуют для того, чтобы адаптироваться к пребыванию эндотрахеальной трубки в дыхательных путях. В идеале должна назначаться лишь легкая седация, при этом пациент должен оставаться контактным и, в то же время, адаптированным к вентиляции. Кроме того, необходимо, чтобы на фоне седации больной был способен осуществлять попытки самостоятельных дыхательных движений, чтобы исключить риск атрофии дыхательных мышц.

Проблемы в ходе искусственной вентиляции легких

"Борьба с вентилятором"

При десинхронизации с респиратором в ходе искусственной вентиляции легких (ИВЛ) отмечается падение дыхательного объема (ДО), обусловленное повышением сопротивления на вдохе. Это приводит к неадекватной вентиляции и гипоксии.

Различают несколько причин десинхронизации с респиратором:

  • Факторы, обусловленные состоянием больного - дыхание, направленное против вдоха со стороны аппарата искусственной вентиляции легких (ИВЛ), задержка дыхания, кашель.
  • Снижение податливости легких - патология легких (отек легких, пневмония, пневмоторакс).
  • Увеличение сопротивления на уровне дыхательных путей - бронхоспазм, аспирация, избыточная секреция трахеобронхиального дерева.
  • Дисконнекция вентилятора или , утечка, неисправность аппаратуры, закупорка эндотрахеальной трубки, ее перекрут или дислокация.

Диагностика проблем с вентиляцией

Высокое давление в дыхательных путях в результате обструкции эндотрахеальной трубки.

  • Пациент мог пережать трубку зубами - введите воздуховод, назначьте седативные препараты.
  • Обструкция дыхательных путей в результате избыточной секреции - проведите отсасывание содержимого трахеи и при необходимости лаваж трахеобронхиального дерева (5 мл физиологического раствора NaCl). Если необходимо, реинтубируйте больного.
  • Эндотрахеальная трубка сместилась в правый главный бронх - подтяните трубку назад.

Высокое давление в дыхательных путях в результате внутрилегочных факторов:

  • Бронхоспазм? (хрипы на вдохе и выдохе). Убедитесь в том, что эндотрахеальная трубка не введена слишком глубоко и не стимулирует карину. Назначьте бронходилататоры.
  • Пневмоторакс, гемоторакс, ателектаз, плевральный выпот? (неравномерные экскурсии грудной клетки, аускультативная картина). Проведите рентгенографию грудной клетки и назначьте соответствующее лечение.
  • Отек легких? (Пенистая мокрота, с кровью, и крепитация). Назначьте диуретики, терапию сердечной недостаточности, аритмии и т.д.

Факторы седатации / анальгезии:

  • Гипервентиляция вследствие гипоксии или гиперкапнии (цианоз, тахикардия, артериальная гипертензия, потоотделение). Увеличьте FiO2 и среднее давление в дыхательных путях, используя PEEP. Увеличьте минутную вентиляцию (при гиперкапнии).
  • Кашель, дискомфорт или боль (повышение ЧСС и АД, потоотделение, выражение лица). Оцените возможные причины дискомфорта (нахождение эндотрахеальной трубки, полный мочевой пузырь, боль). Оцените адекватность анальгезии и седации. Перейдите на тот режим вентиляции, который лучше переносится больным (PS, SIMV). Миорелаксанты следует назначать только в тех случаях, когда исключены все остальные причины десинхронизации с респиратором.

Отлучение от искусственной вентиляции легких

Искусственная вентиляция легких (ИВЛ) может осложняться баротравмой, пневмонией, снижением сердечного выброса и рядом других осложнений. В связи с этим, необходимо прекратить искусственную вентиляцию легких (ИВЛ) как можно быстрее, как только позволяет клиническая ситуация.

Отлучение от респиратора показано в тех случаях, когда в состоянии пациента отмечается положительная динамика. Многие больные получают искусственную вентиляцию легких (ИВЛ) в течение короткого промежутка времени (например, после длительных и травматичных оперативных вмешательств). У ряда пациентов, напротив, искусственная вентиляция легких (ИВЛ) проводится в течение многих дней (например, ОРДС). При длительной искусственной вентиляции легких (ИВЛ) развиваются слабость и атрофия дыхательной мускулатуры, в связи с этим скорость отучения от респиратора во многом зависит от длительности искусственной вентиляции легких (ИВЛ) и характера ее режимов. Для предотвращения атрофии дыхательных мышц рекомендованы вспомогательные режимы вентиляции и адекватная нутритивная поддержка.

Больные, восстанавливающиеся после критических состояний, относятся к группе риска по возникновению "полинейропатии критических состояний". Это заболевание сопровождается слабостью дыхательной и периферической мускулатуры, снижением сухожильных рефлексов и сенсорными нарушениями. Лечение симптоматическое. Есть данные, свидетельствующие о том, что длительное назначение миорелаксантов из группы аминостероидов (векурониум) может вызвать персистирующий мышечный паралич. В связи с этим, векурониум не рекомендован для длительной нервно-мышечной блокады.

Показания для отлучения от искусственной вентиляции легких

Решение о начале отлучения от респиратора часто является субъективным и основывается на клиническом опыте.

Однако наиболее частыми показаниями к отлучению от искусственной вентиляции легких (ИВЛ) являются следующие состояния:

  • Адекватная терапия и положительная динамика основного заболевания;
  • Функция дыхания:
    • ЧД < 35 в мин;
    • FiO 2 < 0,5, SaO2 > 90%, PEEP < 10 см вод. ст.;
    • ДО > 5 мл/кг;
    • ЖЕЛ > 10 мл/кг;
  • Минутная вентиляция < 10 л/мин;
  • Отсутствие инфекции или гипертермии;
  • Стабильность гемодинамики и ВЭБ.

Перед началом отлучения от респиратора не должно быть признаков остаточной нервно-мышечной блокады, доза седативных препаратов должна быть сведена к минимуму, позволяющему поддерживать адекватный контакт с пациентом. В том случае, если сознание пациента угнетено, при наличии возбуждения и отсутствии кашлевого рефлекса, отлучение от искусственной вентиляции легких (ИВЛ) малоэффективно.

Режимы отлучения от искусственной вентиляции легких

До сих пор остается неясным, какой из методов отлучения от искусственной вентиляции легких (ИВЛ) является наиболее оптимальным.

Различают несколько основных режимов отлучения от респиратора:

  1. Тест на спонтанное дыхание без поддержки аппарата искусственной вентиляции легких (ИВЛ). Временно отключают аппарат искусственной вентиляции легких (ИВЛ) и подключают к интубационной трубке Т-образный коннектор или дыхательный контур для проведения СРАР. Периоды спонтанного дыхания постепенно удлиняют. Таким образом, пациент получает возможность для полноценной работы дыхания с периодами отдыха при возобновлении искусственной вентиляции легких (ИВЛ).
  2. Отлучение с помощью режима IMV. Респиратор доставляет в дыхательные пути больного установленный минимальный объем вентиляции, который постепенно снижают, как только пациент в состоянии увеличить работу дыхания. Аппаратный вдох при этом может синхронизироваться с собственной попыткой вдоха (SIMV).
  3. Отлучение с помощью поддержки давлением. При этом режиме аппарат подхватывает все попытки вдоха больного. Этот метод отлучения предусматривает постепенное снижение уровня поддержки давлением. Таким образом, пациент становится ответственным за увеличение объема спонтанной вентиляции. При снижении уровня поддержки давлением до 5-10 см вод. ст. выше PEEP можно начать тест на спонтанное дыхание с Т-образным коннектором или СРАР.

Невозможность отлучения от искусственной вентиляции легких

В процессе отлучения от искусственной вентиляции легких (ИВЛ) необходимо пристально наблюдать за больным, чтобы своевременно выявить признаки усталости дыхательной мускулатуры или неспособности к отлучению от респиратора. Эти признаки включают в себя беспокойство, одышку, снижение дыхательного объема (ДО) и нестабильность гемодинамики, в первую очередь, тахикардию и артериальную гипертензию. В этой ситуации необходимо увеличить уровень поддержки давлением; часто на восстановление дыхательной мускулатуре требуются многие часы. Оптимально начать отлучение от респиратора в утреннее время, чтобы обеспечить надежный мониторинг за состоянием больного в течение дня. При затянувшемся отлучении от искусственной вентиляции легких (ИВЛ) рекомендуют на ночной период увеличивать уровень поддержки давлением, чтобы обеспечить адекватный отдых пациента.

Трахеостомия в отделении интенсивной терапии

Наиболее частое показание к трахеостомии в ОРИТ - облегчение продленной искусственной вентиляции легких (ИВЛ) и процесса отлучения от респиратора. Трахеостомия позволяет снизить уровень седации и таким образом улучшает возможность контакта с больным. Кроме того, она обеспечивает эффективный туалет трахеобронхиального дерева у тех пациентов, кто неспособен к самостоятельному дренажу мокроты в результате ее избыточной продукции или слабости мышечного тонуса. Трахеостомия может проводиться в операционной, как и другая хирургическая процедура; кроме того, ее можно выполнять в палате ОРИТ у постели больного. Для ее проведения широко используется . Время для перехода с интубационной трубки на трахеостому определяется индивидуально. Как правило, трахеостомию осуществляют, если высока вероятность длительной искусственной вентиляции легких (ИВЛ) или возникают проблемы с отучением от респиратора. Трахеостомия может сопровождаться рядом осложнений. К ним относятся блокада трубки, ее диспозиция, инфекционные осложнения и кровотечение. Кровотечение может непосредственно осложнить хирургическое вмешательство; в отдаленном послеоперационном периоде оно может носить эрозийный характер за счет повреждения крупных кровеносных сосудов (например, безымянной артерии). Прочие показания к трахеостомии - обструкция верхних дыхательных путей и защита легких от аспирации при угнетении гортанно-глоточных рефлексов. Кроме того, трахеостомия может выполняться как часть анестезиологического или хирургического пособия при ряде вмешательств (например, при ларингэктомии).


Понравилась медицинская статья, новость, лекция по медицине из категории

Что такое PEEP (positive end expiratory pressure), и для чего оно нужно?

PEEP (ПДКВ - положительное давление конца выдоха) было придумано для борьбы с ЭЗДП (экспираторное закрытие дыхательных путей) по-английски Air trapping (дословно - воздушная ловушка).

У пациентов с ХОБЛ (хроническая обструктивная бо­лезнь легких, или COPD - chronic obstructive pulmonary disease, просвет бронхов уменьшается за счет отека слизистой оболочки.

При выдохе мышечное усилие дыха­тельной мускулатуры через ткань лег­ких передается на внешнюю стенку бронха, ещё больше уменьшая его просвет. Часть бронхиол, не имею­щих каркаса из хрящевых полуколец, пережимается полностью. Воздух не выдыхается, а запирается в лег­ких, как ловушке (происходит Air trapping). Последствия - наруше­ния газообмена и перерастяжение (hyperinflation) альвеол.

Было замечено, что индийские йоги и другие специалисты по

дыхательной гимнастике при лече­нии пациентов с бронхиальной астмой широко практикуют мед­ленный выдох с сопротивлением (например с вокализацией, когда на выдохе пациент поёт «и-и-и-и» или «у-у-у-у», или выдыхает через трубку, опущенную в воду). Таким образом, внутри бронхиол созда­ется давление, поддерживающее

их проходимость. В современных аппаратах ИВЛ PEEP создается с помощью регулируемого или даже управляемого клапана выдоха.

В дальнейшем выяснилось, что у PEEP может быть ещё одно применение:

Recruitment (мобилизация спав­шихся альвеол).

При ОРДС (острый респира­торный дистресс-синдром, ARDS - acute respiratory distress syn­drome) часть альвеол находится в «слипшемся» состоянии и не уча­ствует в газообмене. Это слипание происходит из-за нарушения свойств легочного сурфактанта и патологической экссудации в про­свет альвеол. Recruitment - это такой маневр управления аппаратом ИВЛ, при котором за счет правильного подбора давления на вдохе, длительности вдоха и повышения PEEP добиваются расправления слипшихся альвеол. После завершения Recruitment manever (ма­невр мобилизации альвеол) для поддержания альвеол в расправлен­ном состоянии, ИВЛ продолжается с использованием PEEP.

АутоПДКВ (AutoPEEP Intrinsic PEEP) возникает, когда на­стройки аппарата ИВЛ (частота дыханий, объём и длительность вдоха) не соответствуют возможностям пациента. В этом случае па­циент до начала нового вдоха не успевает выдохнуть весь воздух пре­дыдущего вдоха. Соответственно давление в конце выдоха (end expiratory pressure) оказывается значительно более positive, чем хо­телось бы. Когда сформировалось преставление об АутоПДКВ (Auto PEEP, Intrinsic PEEP или iPEEP), договорились под понятием PEEP понимать то давление, которое создает в конце выдоха аппарат ИВЛ, а для обозначения суммарного ПДКВ введен термин Total PEEP.

Total PEEP=AutoPEEP+PEEP

АутоПДКВ в англоязычной литературе может быть названо: Inadvertent PEEP - непреднамеренное ПДКВ,

Intrinsic PEEP - внутреннее ПДКВ,

Inherent PEEP - естественное ПДКВ,

Endogenous PEEP - эндогенное ПДКВ,

Occult PEEP - скрытое ПДКВ,

Dynamic PEEP - динамическое ПДКВ.

На современных аппаратах ИВЛ существует специальный тест или программа для определения величины AutoPEEP. ПДКВ (PEEP) измеряют в сантиметрах водного столба (см Н2О) и в мил­либарах (mbar или мбар). 1 миллибар = 0,9806379 см водного столба.

В настоящее время существует большое количество приспо­соблений для респираторной терапии и создания PEEP, не являю­щихся аппаратами ИВЛ (например: дыхательная маска с пружинным клапаном).

PEEP - это опция, которая встраивается в различные режимы ИВЛ. CPAP constant positive airway pressure (постоянное положительное давление в дыхательных путях). В данной опции constant следует понимать как физический или математический термин: «всегда оди­наковый». Умный аппарат ИВЛ PPV при включении этой опции, вир­туозно «играя» клапанами вдоха и выдоха, будет поддерживать в дыхательном контуре постоянное одинаковое давление. Логика управления опцией CPAP работает в соответствии с сигналами с дат­чика давления. Если пациент вдыхает, клапан вдоха приоткрывается насколько необходимо, чтобы поддержать давление на заданном уровне. При выдохе, в соответствии с управляющей командой, при­открывается клапан выдоха, чтобы выпустить из дыхательного кон­тура избыточный воздух.


На рисунке А представлен идеальный график давления при CPAP. В реальной клинической ситуации аппарат ИВЛ не успевает мгно­венно среагировать на вдох и выдох пациента - рисунок Б.

Обратите внимание на то, что во время вдоха отмечается небольшое снижение давления, а во время выдоха - повышение.

В том случае, если опцией CPAP дополнен какой-либо режим ИВЛ, более правильно называть её Baseline pressure, поскольку во время аппаратного вдоха pressure(давление) уже не constant.

Baseline pressure или просто Baseline на панели управления аппа­рата ИВЛ обычно, по традиции, обозначается как PEEP/CPAP и является тем заданным уровнем давления в дыхательном контуре, которое аппарат будет поддерживать в интервалах между дыхатель­ными циклами. Понятие Baseline pressure, по современным пред­ставлениям, наиболее адекватно определяет данную опцию аппарата ИВЛ, но важно знать, что принцип управления для PEEP, CPAP и Baseline одинаков. На графике давления - это один и тот же сегмент на оси «Х», и, по сути дела, мы можем рассматривать PEEP, CPAP и Baseline как синонимы. В том случае, если PEEP=0, это ZEEP (zero end expiratory pressure), и Baseline соответствует атмосфер­ному давлению.

  • Дыхательный маневр, который строит квазистатическую кривую давления/объема
  • Упрощенная оценка возможности раскрытия объема легких у пациентов с острым респираторным дистресс-синдромом
  • Легкое и безопасное выполнение маневров рекрутмента легких
  • Можно сочетать с измерением пищеводного давления

Инструмент для защиты легких во время вентиляции, используемый при диагностике и рекрутменте

Инструмент для защиты легких во время вентиляции (P/V Tool Pro) обеспечивает дыхательный маневр, который строит квазистатическую кривую давления/объема. Этот метод может использоваться при оценке возможности раскрытия объема легких и определения необходимой стратегии рекрутмента.

P/V Tool Pro также может использоваться для выполнения маневра рекрутмента с применением длительной инфляции и измерения увеличения объема легких. Инструмент особенно полезен при лечении пациентов с острым респираторным дистресс-синдромом, поскольку выбор надлежащей стратегии рекрутмента легких и правильные настройки уровня PEEP имеют решающее значение для данной группы больных.

Использование функции измерения пищеводного давления вместе с инструментом P/V Tool Pro позволяют получить более четкое представление о механике легких и грудной клетки. Это делает возможным применение стратегии вентиляции с защитой легких с помощью регулировки уровня PEEP (Talmor 2008) и оптимизации параметров маневра рекрутмента, рабочего давления и дыхательного объема.

Отзывы клиентов об инструменте P/V Tool Pro

Камилла Невилль,

врач-инструктор отделения искусственной вентиляции легких,

больница в г. Орландо, штат Флорида, США

Мы рекомендуем штатным специалистам по дыхательной терапии использовать P/V Tool сразу после перевода пациента на искусственную вентиляцию легких. Это помогает достичь оптимального PEEP. По отзывам наших специалистов, этот инструмент очень полезен, особенно в тяжелых случаях.

Кен Харгетт,

главный врач отделения искусственной вентиляции легких,

методистская больница Хьюстона, Техас, США

Мы используем инструмент P/V Tool для определения исходных настроек PEEP почти у всех пациентов на искусственной вентиляции. Это делается перед интубацией, сразу после вводного наркоза. Еще мы часто применяем P/V Tool для рекрутмента, особенно у пациентов с рецидивирующим ателектазом.

Научное обоснование


  • P/V Tool является эквивалентом метода CPAP для отслеживания статических кривых P/V дыхательной системы (Piacentini 2009).
  • При проведении вентиляции с защитой легких (включая установку параметров PEEP на основе нижней точки перегиба (LIP) показатели выживаемости выше, чем при использовании традиционных методов (Amato 1998).
  • У пациентов с острым респираторным дистресс-синдромом линейная податливость дыхательной системы (Crs) взаимосвязана с возможностью раскрытия объема легких (Veillard-Baron 2003).
  • Гистерезис кривой P/V может использоваться для оценки возможности раскрытия объема легких во время стационарного лечения (Demory 2008).
  • На ранней стадии развития острого респираторного дистресс-синдрома у большинства пациентов удалось раскрыть объем легких (Borges 2006).
  • При длительной инфляции раскрытие объема легких в большинстве случаев происходит в течение первых 10 секунд (Arnal 2011).

Принцип работы P/V Tool Pro

При выполнении маневра с использованием P/V Tool Pro не нужно отсоединять дыхательный контур или изменять режим и настройки аппарата ИВЛ. Обычную вентиляцию легких можно возобновить в любое время.

Квазистатическая кривая давления/объема (P/V)

P/V Tool Pro регистрирует соотношение давления и объема легких при низкой скорости потока (2 смH2O/с). Давление в дыхательном контуре линейно зависит от заданного оператором целевого значения давления. Когда достигается целевое значение, давление снижается к начальному уровню. Полученные кривые могут быть использованы для анализа:

  • нижней точки перегиба инфляционной кривой давления/объема;
  • линейной податливости инфляционной кривой давления/объема;
  • гистерезиса (разница объема между двумя кривыми).

Маневр рекрутмента с применением длительной инфляции

Давление в дыхательном контуре линейно зависит от заданного оператором целевого значения давления при заданной оператором скорости Ramp. Конечные изменения объема записываются. При достижении целевого значение активируется заданная оператором пауза. После паузы давление спускается в линейном соотношении к заданному оператором показателю «Кон. PEEP». Интегрирование потока во время паузы и определяет объем заполненного легкого.

Загрузки

Список литературы

Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998 Feb 5;338(6):347-54

Arnal JM, Paquet J, Wysocki M, Demory D, Donati S, Granier I, Corno G, Durand-Gasselin J. Optimal duration of a sustained inflation recruitment maneuver in ARDS patients. Intensive Care Med. 2011 Oct;37(10):1588-94.

Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CS, Carvalho CR, Amato MB. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006 Aug 1;174(3):268-78.

Demory D, Arnal JM, Wysocki M, Donati S, Granier I, Corno G, Durand-Gasselin J. Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med. 2008 Nov;34(11):2019-25

Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky AS, Marco Ranieri V. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002 Apr;96(4):795-802.

Piacentini E, Wysocki M, Blanch L. Intensive Care Med. A new automated method versus continuous positive airway pressure method for measuring pressure-volume curves in patients with acute lung injury. 2009 Mar;35(3):565-70

Talmor D, Sarge T, Malhotra A, O"Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008 Nov 13;359(20):2095-104

Vieillard-Baron A, Prin S, Chergui K, Page B, Beauchet A, Jardin F. Early patterns of static pressure-volume loops in ARDS and their relations with PEEP-induced recruitment. Intensive Care Med. 2003 Nov;29(11):1929-35

Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006 May;34(5):1311-8

Что такое PEEP (positive end expiratory pressure), и для чего оно нужно?

PEEP (ПДКВ - положительное давление конца выдоха) было придумано для борьбы с ЭЗДП (экспираторное закрытие дыхательных путей) по-английски Air trapping (дословно – воздушная ловушка).


У пациентов с ХОБЛ (хроническая обструктивная болезнь легких, или COPD – chronic obstructive pulmonary disease, просвет бронхов уменьшается за счет отека слизистой оболочки. При выдохе мышечное усилие дыхательной мускулатуры через ткань легких передается на внешнюю стенку бронха, ещё больше уменьшая его просвет. Часть бронхиол, не имеющих каркаса из хрящевых полуколец, пережимается полностью. Воздух не выдыхается, а запирается в легких, как ловушке (происходит Air trapping). Последствия – нарушения газообмена и перерастяжение (hyperinflation) альвеол.


Было замечено, что индийские йоги и другие специалисты по дыхательной гимнастике при лечении пациентов с бронхиальной астмой широко практикуют медленный выдох с сопротивлением (например с вокализацией, когда на выдохе пациент поёт «и-и-и-и» или «у-у-у-у», или выдыхает через трубку, опущенную в воду). Таким образом, внутри бронхиол создается давление, поддерживающее их проходимость. В современных аппаратах ИВЛ PEEP создается с помощью регулируемого или даже управляемого клапана выдоха.

В дальнейшем выяснилось, что у PEEP может быть ещё одно применение:


Recruitment (мобилизация спавшихся альвеол).

При ОРДС (острый респираторный дистресc-синдром, ARDS – acute respiratory distress syndrome) часть альвеол находится в «слипшемся» состоянии и не участвует в газообмене. Это слипание происходит из-за нарушения свойств легочного сурфактанта и патологической экссудации в просвет альвеол. Recruitment – это такой маневр управления аппаратом ИВЛ, при котором за счет правильного подбора давления на вдохе, длительности вдоха и повышения PEEP добиваются расправления слипшихся альвеол. После завершения Recruitment manever (маневр мобилизации альвеол) для поддержания альвеол в расправленном состоянии, ИВЛ продолжается с использованием PEEP.

АутоПДКВ (AutoPEEP Intrinsic PEEP) возникает, когда настройки аппарата ИВЛ (частота дыханий, объём и длительность вдоха) не соответствуют возможностям пациента. В этом случае пациент до начала нового вдоха не успевает выдохнуть весь воздух предыдущего вдоха. Соответственно давление в конце выдоха (end expiratory pressure) оказывается значительно более positive, чем хотелось бы. Когда сформировалось преставление об АутоПДКВ (Auto PEEP, Intrinsic PEEP или iPEEP), договорились под понятием PEEP понимать то давление, которое создает в конце выдоха аппарат ИВЛ, а для обозначения суммарного ПДКВ введен термин Total PEEP.

Total PEEP=AutoPEEP+PEEP АутоПДКВ в англоязычной литературе может быть названо:

  • Inadvertent PEEP – непреднамеренное ПДКВ,
  • Intrinsic PEEP – внутреннее ПДКВ,
  • Inherent PEEP – естественное ПДКВ,
  • Endogenous PEEP – эндогенное ПДКВ,
  • Occult PEEP – скрытое ПДКВ,
  • Dynamic PEEP – динамическое ПДКВ.

На современных аппаратах ИВЛ существует специальный тест или программа для определения величины AutoPEEP.

ПДКВ (PEEP) измеряют в сантиметрах водного столба (см H 2 O) и в миллибарах (mbar или мбар). 1 миллибар = 0,9806379 см водного столба.

В настоящее время существует большое количество приспособлений для респираторной терапии и создания PEEP, не являющихся аппаратами ИВЛ (например: дыхательная маска с пружинным клапаном).

PEEP – это опция, которая встраивается в различные режимы ИВЛ.

CPAP constant positive airway pressure (постоянное положительное давление в дыхательных путях). В данной опции constant следует понимать как физический или математический термин: «всегда одинаковый». Умный аппарат ИВЛ PPV при включении этой опции, виртуозно «играя» клапанами вдоха и выдоха, будет поддерживать в дыхательном контуре постоянное одинаковое давление. Логика управления опцией CPAP работает в соответствии с сигналами с датчика давления. Если пациент вдыхает, клапан вдоха приоткрывается насколько необходимо, чтобы поддержать давление на заданном уровне. При выдохе, в соответствии с управляющей командой, приоткрывается клапан выдоха, чтобы выпустить из дыхательного контура избыточный воздух.


На рисунке А представлен идеальный график давления при CPAP.

В реальной клинической ситуации аппарат ИВЛ не успевает мгновенно среагировать на вдох и выдох пациента – рисунок Б.

Обратите внимание на то, что во время вдоха отмечается небольшое снижение давления, а во время выдоха – повышение.

В том случае, если опцией CPAP дополнен какой-либо режим ИВЛ, более правильно называть её Baseline pressure, поскольку во время аппаратного вдоха pressure (давление) уже не constant.
Baseline pressure или просто Baseline на панели управления аппарата ИВЛ обычно, по традиции, обозначается как PEEP/CPAP и является тем заданным уровнем давления в дыхательном контуре, которое аппарат будет поддерживать в интервалах между дыхательными циклами. Понятие Baseline pressure, по современным представлениям, наиболее адекватно определяет данную опцию аппарата ИВЛ, но важно знать, что принцип управления для PEEP, CPAP и Baseline одинаков. На графике давления – это один и тот же сегмент на оси «Y», и, по сути дела, мы можем рассматривать PEEP, CPAP и Baseline как синонимы. В том случае, если PEEP=0, это ZEEP (zero end expiratory pressure), и Baseline соответствует атмосферному давлению.