Ликвор, что это такое простыми словами. Лечение спинномозговой жидкости

Оболочки головного мозга. Спинномозговая жидкость: образование и пути оттока.

Оболочки головного мозга

Головной мозг, как и спинной, окружен тремя мозговыми оболочками. Самая наружная из этих оболочек – твердая мозговая оболочка. За ней следует паутинная оболочка, а кнутри от нее находится внутренняя мягкая мозговая (сосудистая) оболочка, непосредственно прилежащая к поверхности мозга. В области большого затылочного отверстия эти оболочки переходят в оболочки спинного мозга.

Твердая оболочка головного мозга , dura mater encephali , отличается от двух других особой плотностью, прочностью, наличием в своем составе большого количества коллагеновых и эластических волокон. Она образована плотной волокнистой соединительной тканью.

Выстилая изнутри полость черепа, ТМО является одновременно его внутренней надкостницей. В области большого затылочного отверстия ТМО, срастаясь с его краями, переходит в ТМО спинного мозга. Проникая в отверстия черепа, через которые выходят черепные нервы, она образует периневральные влагалища черепных нервов и срастается с краями отверстий.

С костями свода черепа ТМО связана непрочно и легко от них отделяется (этим обусловлена возможность образования эпидуральных гематом). В области основания черепа оболочка прочно сращена с костями особенно в местах соединения костей друг с другом и в местах выхода из полости черепа черепных нервов.

Внутренняя поверхность твердой оболочки, обращенная к паутинной оболочке, покрыта эндотелием, поэтому она гладкая, блестящая с перламутровым оттенком.

В некоторых местах твердая оболочка головного мозга расщепляется и образует отростки, которые глубоко впячиваются в щели, отделяющие друг от друга части мозга. В местах отхождения отростков (в их основании), а также в местах, где ТМО прикрепляется к костям внутреннего основания черепа, в расщеплениях твердой оболочки, образуются каналы треугольной формы, выстланные эндотелием, - синусы твердой мозговой оболочки , sinus durae matris .

Самым крупным отростком ТМО головного мозга является расположенный в сагиттальной плоскости и проникающий в продольную щель большого мозга между правым и левым полушариями серп большого мозга , falx cerebri . Это тонкая серповидно изогнутая пластинка твердой оболочки, которая в виде двух листков проникает в продольную щель головного мозга. Не достигая мозолистого тела, эта пластинка отделяет правое полушарие от левого. В расщепленном основании серпа, которое по своему направлению соответствует борозде верхнего сагиттального синуса, залегает верхний сагиттальный синус. В толще противоположного нижнего свободного края серпа большого мозга, также между двумя его листками, находится нижний сагиттальный синус.

Спереди серп большого мозга сращен с петушиным гребнем решетчатой кости, crista gali ossis ethmoidalis. Задний отдел серпа на уровне внутреннего затылочного выступа, protuberantia occipitalis interna, срастается с наметом мозжечка.

Намет мозжечка , tentorium cerebelli , нависает двускатной палаткой над задней черепной ямкой, в которой лежит мозжечок. Проникая в поперечную щель большого мозга, намет мозжечка отделяет затылочные доли от полушарий мозжечка. Передний край намета мозжечка неровный, он образует вырезку намета, incisura tentorii, к которой спереди прилежит ствол мозга.

Латеральные края намета мозжечка сращены с краями борозды поперечного синуса затылочной кости в задних отделах и с верхними краями пирамид височных костей до задних наклоненных отростков клиновидной кости в передних отделах с каждой стороны.

Серп мозжечка , falx cerebelli , подобно серпу большого мозга, расположен в сагиттальной плоскости. Передний его край свободен и проникает между полушариями мозжечка. Задний край серпа мозжечка располагается вдоль внутреннего затылочного гребня, crista occipitalis interna, до заднего края большого затылочного отверстия, охватывая последнее с двух сторон двумя ножками. В основании серпа мозжечка имеется затылочный синус.

Диафрагма турецкого седла , diaphragma sellae turcicae , представляет собой горизонтально расположенную пластинку с отверстием в центре, натянутую над гипофизарной ямкой и образующую ее крышу. Под диафрагмой в ямке располагается гипофиз. Через отверстие в диафрагме гипофиз с помощью гипофизарной ножки и воронки соединяется с гипоталамусом.

В области тройничного вдавления, у вершины пирамиды височной кости, твердая мозговая оболочка расщепляется на два листка. Эти листки образуют тройничную полость , cavum trigeminale , в которой залегает узел тройничного нерва.

Синусы твердой оболочки головного мозга. Синусы (пазухи) ТМО головного мозга, образованные за счет расщепления оболочки на две пластинки, являются каналами, по которым венозная кровь оттекает от головного мозга во внутренние яремные вены.

Листки твердой оболочки, образующие синус, туго натянуты и не спадаются. Клапанов синусы не имеют. Поэтому на разрезе синусы зияют. Такое строение синусов позволяет венозной крови свободно оттекать от головного мозга под действием собственной тяжести, независимо от колебания внутричерепного давления.

Различают следующие синусы твердой оболочки головного мозга.

Верхний сагиттальный синус , sinus sagittalis superior , располагается вдоль всего верхнего края серпа большого мозга, от петушиного гребня до внутреннего затылочного выступа. В передних отделах этот синус анастомозирует с венами полости носа. Задний конец синуса впадает в поперечный синус. Справа и слева от верхнего сагиттального синуса располагаются сообщающиеся с ним боковые лакуны, lacunae laterales. Это небольшие полости между наружным и внутренним листками твердой оболочки, число и размеры которых очень вариабельны. Полости лакун сообщаются с полостью верхнего сагиттального синуса, в них впадают вены твердой оболочки, вены головного мозга и диплоические вены.

Нижний сагиттальный синус , sinus sagittalis inferior, находится в толще нижнего свободного края большого серпа. Своим задним концом он впадает в прямой синус, в его переднюю часть, в том месте, где нижний край серпа большого мозга срастается с передним краем намета мозжечка.

Прямой синус , sinus rectus , расположен сагиттально в расщеплении намета мозжечка по линии прикрепления к нему большого серпа. Он является как бы продолжением нижнего сагиттального синуса кзади. Прямой синус соединяет задние концы верхнего и нижнего сагиттальных синусов. Помимо нижнего сагиттального синуса, в передний конец прямого синуса впадает большая мозговая вена, vena cerebri magna. Сзади прямой синус впадает в поперечный синус, в его среднюю часть, получившую название синусного стока.

Поперечный синус , sinus transversus , самый большой и широкий залегает в месте отхождения от ТМО намета мозжечка. На внутренней поверхности чешуи затылочной кости этому синусу соответствует широкая борозда поперечного синуса. Далее он спускается в борозде сигмовидного синуса уже как сигмовидный синус, sinus sigmoideus и далее у foramen jugulare переходит в устье внутренней яремной вены. Таким образом, поперечный и сигмовидный синус являются главными коллекторами для оттока всей венозной крови от мозга. В поперечный синус частью непосредственно, частью опосредованно впадают все остальные синусы. То место, где в него впадают верхний сагиттальный синус, затылочный синус и прямой синус, называется синусным стоком, confluens sinuum. Справа и слева поперечный синус продолжается в сигмовидный синус соответствующей стороны.

Затылочный синус , sinus occipitalis , лежит в основании серпа мозжечка. Спускаясь вдоль внутреннего затылочного гребня, достигает заднего края большого затылочного отверстия, где разделяется на две ветви, охватывающие сзади и с боков это отверстие. Каждая из ветвей затылочного синуса впадает в сигмовидный синус своей стороны, а верхний конец - в поперечный синус.

Сигмовидный синус , sinus sigmoideus , располагается в одноименной борозде на внутренней поверхности черепа, имеет S-образную форму. В области яремного отверстия сигмовидный синус переходит во внутреннюю яремную вену.

Пещеристый синус , sinus cavernosus , парный, находится по бокам турецкого седла. Получил свое название вследствие наличия многочисленных перегородок, придающих синусу вид пещеристой структуры. Через этот синус проходят внутренняя сонная артерия со своим симпатическим сплетением, глазодвигательный, блоковый, глазной (первая ветвь тройничного нерва) и отводящий нервы. Между правым и левым пещеристыми синусами имеются сообщения в виде переднего и заднего межпещеристых синусов, sinus intercavernosi. Таким образом, в области турецкого седла образуется венозное кольцо. В передние отделы пещеристого синуса впадают клиновидно-теменной синус и верхняя глазная вена.

Клиновидно-теменной синус , sinus sphenoparietalis , парный, прилежит к свободному заднему краю малого крыла клиновидной кости, в расщеплении прикрепляющейся здесь ТМО. Он впадает в пещеристый синус. Отток крови из пещеристого синуса осуществляется в верхний и нижний каменистые синусы.

Верхний каменистый синус , sinus petrosus superior , также является притоком пещеристого синуса, он располагается по верхнему краю пирамиды височной кости и соединяет пещеристый синус с поперечным синусом.

Нижний каменистый синус , sinus petrosus inferior , выходит из пещеристого синуса, залегает между скатом затылочной кости и пирамидой височной кости в борозде нижнего каменистого синуса. Он впадает в верхнюю луковицу внутренней яремной вены. К нему также подходят вены лабиринта. Оба нижних каменистых синуса соединяются между собой несколькими венозными каналами и образуют на базилярной части затылочной кости базилярное сплетение , plexus basilaris . Оно образуется путем слияния венозных ветвей от правого и левого нижних каменистых синусов. Это сплетение через большое затылочное отверстие соединяется с внутренним позвоночным венозным сплетением.

В некоторых местах синусы ТМО образуют анастомозы с наружными венами головы при помощи эмиссарных вен – выпускников, vv. emissariae.

Помимо этого, синусы имеют сообщения с диплоическими венами, vv. diploicae, расположенными в губчатом веществе костей свода черепа и впадающими в поверхностные вены головы.

Таким образом, венозная кровь от головного мозга оттекает по системам его поверхностных и глубоких вен в синусы ТМО и далее в правую и левую внутренние яремные вены.

Помимо этого, за счет анастомозов синусов с диплоическими венами, венозными выпускниками и венозными сплетениями (позвоночными, базилярными, подзатылочными, крыловидными и др.) венозная кровь от головного мозга может оттекать в поверхностные вены головы и лица.

Сосуды и нервы твердой оболочки головного мозга . К твердой оболочке головного мозга подходит через правое и левое остистое отверстие средняя менингеальная артерия (ветвь верхнечелюстной артерии), которая разветвляется в височно-теменном отделе оболочки. ТМО передней черепной ямки кровоснабжается ветвями передней менингеальной артерии (ветвь передней решетчатой артерии из системы глазной артерии). В оболочке задней черепной ямки разветвляются задняя менингеальная артерия – ветвь восходящей глоточной артерии из наружной сонной артерии, проникающая в полость черепа через яремное отверстие, а также менингеальные ветви позвоночной артерии и сосцевидная ветвь затылочной артерии, входящей в полость черепа через сосцевидное отверстие.

Твердая оболочка головного мозга иннервируется ветвями тройничного и блуждающего нервов, а также за счет симпатических волокон, поступающих в оболочку в толще адвентиции кровеносных сосудов.

ТМО в области передней черепной ямки получает ветви из глазного нерва (первая ветвь тройничного нерва). Ветвь этого нерва – тенториальная ветвь - снабжает намет мозжечка и серп большого мозга.

ТМО средней черепной ямки иннервируется средней менингеальной ветвью от верхнечелюстного нерва (вторая ветвь тройничного нерва), а также ветвью от нижнечелюстного нерва (третья ветвь тройничного нерва).

ТМО задней черепной ямки иннервируется в основном менингеальной ветвью блуждающего нерва.

Кроме того, в той или иной степени в иннервации твердой оболочки головного мозга могут принимать участие блоковый, языкоглоточный, добавочный и подъязычный нервы.

Большая часть нервных ветвей ТМО следует по ходу сосудов этой оболочки, за исключением намета мозжечка. В нем мало сосудов и нервные ветви распространяются в нем независимо от сосудов.

Паутинная оболочка головного мозга , arachnoidea mater , располагается кнутри от ТМО. Тонкая, прозрачная паутинная оболочка в отличие от мягкой оболочки (сосудистой) не проникает в щели между отдельными частями мозга и в борозды полушарий. Она покрывает головной мозг, переходя с одной части мозга на другую, перекидываясь над бороздами в виде мостиков. С мягкой сосудистой оболочкой паутинная оболочка связана субарахноидальными трабекулами, а с ТМО – грануляциями паутинной оболочки. От мягкой сосудистой оболочки паутинная отделена подпаутинным (субарахноидальным) пространством, spatium subarachnoideum, в котором содержится спинномозговая жидкость, liquor cerebrospinalis.

Наружная поверхность паутинной оболочки не сращена с прилегающей к ней твердой оболочкой. Однако местами, главным образом по сторонам верхнего сагиттального синуса и в меньшей степени по сторонам поперечного синуса, а также возле других синусов, отростки паутинной оболочки, именуемые грануляциями, granulationes arachnoidales (пахионовы грануляции), входят в ТМО и вместе с ней внедряются во внутреннюю поверхность костей свода или синусы. В костях в этих местах образуются небольшие углубления – ямочки грануляций. Их особенно много в области сагиттального шва. Грануляции паутинной оболочки представляют собой органы, осуществляющие путем фильтрации отток ликвора в венозное русло.

Внутренняя поверхность паутинной оболочки обращена к мозгу. На выступающих частях извилин головного мозга она тесно прилежит к ММО, не следуя, однако, за последней в глубину борозд и щелей. Таким образом, паутинная оболочка перекидывается как бы мостиками от извилины к извилине. В этих местах паутинная оболочка связана с ММО субарахноидальными трабекулами.

В местах, где паутинная оболочка располагается над широкими и глубокими бороздами, субарахноидальное пространство расширено и образует подпаутинные цистерны, cisternae subarachnoidales.

Наиболее крупными подпаутинными цистернами являются следующие:

1. Мозжечково-мозговая цистерна , cisterna cerebellomedullaris , расположена между продолговатым мозгом вентрально и мозжечком дорсально. Сзади она ограничена паутинной оболочкой. Это самая крупная цистерна.

2. Цистерна латеральной ямки большого мозга , cisterna fossae lateralis cerebri , находится на нижнебоковой поверхности полушария большого мозга в одноименной ямке, что соответствует передним отделам латеральной сильвиевой борозды.

3. Цистерна перекреста , cisterna chiasmatis , расположена на основании головного мозга, кпереди от зрительного перекреста.

4. Межножковая цистерна , cisterna interpeduncularis , определяется в межножковой ямке, кпереди (книзу) от заднего продырявленного вещества.

Кроме того, ряд крупных подпаутинных пространств, которые можно отнести к цистернам. Это идущая вдоль верхней поверхности и колена мозолистого тела цистерна мозолистого тела; расположенная на дне поперечной щели большого мозга обходящая цистерна, имеющая вид канала; боковая цистерна моста, залегающая под средними мозжечковыми ножками, и, наконец, средняя цистерна моста в области базилярной борозды моста.

Подпаутинное пространство головного мозга сообщается с подпаутинным пространством спинного мозга в области большого затылочного отверстия.

Спинномозговая жидкость, заполняющая подпаутинное пространство, продуцируется сосудистыми сплетениями желудочков мозга. Из боковых желудочков через правое и левое межжелудочковые отверстия спинномозговая жидкость поступает в III желудочек, где также имеется сосудистое сплетение. Из третьего желудочка, через водопровод мозга ликвор попадает в IV желудочек, а из него через отверстия Можанди и Люшка в мозжечково-мозговую цистерну подпаутинного пространства.

Мягкая оболочка головного мозга

Мягкая сосудистая оболочка головного мозга , pia mater encephali , прилегает непосредственно к веществу головного мозга и проникает вглубь всех его щелей и борозд. На выступающих участках извилин она прочно сращена с паутинной оболочкой. По мнению некоторых авторов ММО, все же отделяется от поверхности мозга щелевидным субпиальным пространством.

Мягкая оболочка состоит из рыхлой соединительной ткани, в толще которой располагаются кровеносные сосуды, проникающие в вещество головного мозга и питающие его.

Вокругсосудистые пространства, отделяя ММО от сосудов, образую их влагалища – сосудистую основу, tela choroidea. Эти пространства сообщаются с подпаутинным пространством.

Проникая в поперечную щель мозга и поперечную щель мозжечка, ММО натянута между частями мозга, ограничивающими эти щели, и тем самым она замыкает сзади полости III и IV желудочков.

В определенных местах ММО проникает в полости желудочков мозга и образует сосудистые сплетения, продуцирующие спинномозговую жидкость.

Анатомия ликворной системы

К ликворной системе относят желудочки мозга, цистерны основания мозга, спинальные субарахноидальные пространства, конвекситальные субарахноидальные пространства. Объем цереброспинальной жидкости (которую также принято называть ликвором) у здорового взрослого человека составляет 150-160 мл , при этом основным вместилищем ликвора являются цистерны.

Секреция ликвора

Ликвор секретируется в основном эпителием сосудистых сплетений боковых, III-го и IV-го желудочков . В то же время, резекция сосудистых сплетений, как правило, не излечивает гидроцефалию, что объясняют экстрахороидальной секрецией ликвора , которая до сих пор изучена очень плохо. Скорость секреции ликвора в физиологических условиях постоянна и составляет 0,3-0,45 мл/мин . Секреция ликвора – активный энергоёмкий процесс, ключевую роль в котором играют Na/K-АТФаза и карбоангидраза эпителия сосудистых сплетений . Скорость секреции ликвора зависит от перфузии сосудистых сплетений : она заметно падает при выраженной артериальной гипотонии, например, у больных в терминальных состояниях. В тоже время, даже резкое повышение внутричерепного давления не прекращает секрецию ликвора, таким образом, линейной зависимости секреции ликвора от церебрального перфузионного давления нет .

Клинически значимое снижение скорости секреции ликвора отмечается (1) при применении ацетазоламида (диакарба), который специфически ингибирует карбоангидразу сосудистых сплетений , (2) при применении кортикостероидов, которые ингибируют Na/K-АТФазу сосудистых сплетений , (3) При атрофии сосудистых сплетений в исходе воспалительных заболеваний ликворной системы, (4) после хирургической коагуляции или иссечения сосудистых сплетений . Скорость секреции ликвора значимо снижается с возрастом, что особенно заметно после 50-60 лет .

Клинически значимое увеличение скорости секреции ликвора отмечается (1) при гиперплазии или опухолях сосудистых сплетений (хориоидпапиллома), в этом случае избыточная секреция ликвора может стать причиной редкой гиперсекреторной формы гидроцефалии ; (2) при текущих воспалительных заболеваниях ликворной системы (менингит, вентрикулит) .

Кроме этого, в клинически незначительных пределах секреция ликвора регулируется симпатической нервной системой (симпатическая активация и применение симпатомиметиков снижают секрецию ликвора ), а также посредством различных эндокринных влияний .

Циркуляция ликвора

Циркуляцией называют перемещение ликвора в пределах ликворной системы. Различают быстрые и медленные перемещения ликвора. Быстрые перемещения ликвора носят осциллирующий характер и возникают в результате изменения кровенаполнения мозга и артериальных сосудов в цистернах основания в течение сердечного цикла: в систолу их кровенаполнение увеличивается, и избыточный объем ликвора вытесняется из ригидной полости черепа в растяжимый спинальный дуральный мешок; в диастолу ликвороток направлен из спинального субарахноидального пространства вверх, в цистерны и желудочки мозга. Линейная скорость быстрых перемещений ликвора в водопроводе мозга составляет 3-8 см/сек , объемная скорость ликворотока - до 0,2-0,3 мл/сек . С возрастом пульсовые перемещения ликвора ослабевают пропорционально редукции церебрального кровотока . Медленные перемещения ликвора связаны с его непрекращающейся секрецией и резорбцией, и потому имеют однонаправленный характер: из желудочков в цистерны и далее в субарахноидальные пространства к местам резорбции. Объемная скорость медленных перемещений ликвора равна скорости его секреции и резорбции, то есть 0,005-0,0075 мл/сек, что в 60 раз медленнее быстрых перемещений.

Затруднение циркуляции ликвора является причиной обструктивной гидроцефалии и наблюдается при опухолях, поствоспалительных изменениях эпендимы и паутинной оболочки, а также при аномалиях развития головного мозга. Некоторые авторы обращают внимание на то, что по формальным признакам наряду с внутренней гидроцефалией к категории обструктивной можно относить и случаи так называемой экстравентрикулярной (цистернальной) обструкции . Целесообразность такого подхода сомнительна, поскольку клинические проявления, рентгенологическая картина и, главное, лечение при «цистернальной обструкции» аналогичны таковым при «открытой» гидроцефалии.

Резорбция ликвора и сопротивление резорбции ликвора

Резорбция – процесс возврата цереброспинальной жидкости из ликворной системы в кровеносную систему, а именно, в венозное русло. Анатомически основным местом резорбции ликвора у человека являются конвекситальные субарахноидальные пространства в окрестностях верхнего сагиттального синуса. Альтернативные пути резорбции ликвора (по ходу корешков спинномозговых нервов, сквозь эпендиму желудочков) у человека имеют значение у младенцев, а позже лишь в условиях патологии . Так трансэпендимарная резорбция возникает при обструкции ликворных путей под водействием повышенного внутрижелудочкового давления, признаки трансэпендимарной резорбции видны по данным КТ и МРТ в виде перивентрикулярного отека (рис. 1, 3).

Пациент А., 15 лет. Причина гидроцефалии - опухоль среднего мозга и подкорковых образований слева (фибриллярная астроцитома). Обследован в связи с прогрессирующими нарушениями движения в правых конечностях. У пациента имелись застойные диски зрительных нервов. Окружность головы 55 сантиметров (возрастная норма). А – МРТ исследование в режиме Т2, выполненное до лечения. Выявляется опухоль среднего мозга и подкорковых узлов, вызывающая обструкцию ликворных путей на уровне водопровода мозга, боковые и III желудочки расширены, контур передних рогов нечеткий («перивентрикулярный отек»). Б – МРТ исследование головного мозга в режиме Т2, выполненное спустя 1 год после эндоскопической вентрикулостомии III желудочка. Желудочки и конвекситальные субарахноидальные пространства не расширены, контуры передних рогов боковых желудочков четкие. При контрольном обследовании клинических признаков внутричерепной гипертензии, включая изменения на глазном дне, не выявлялось.

Пациент Б, 8 лет. Комплексная форма гидроцефалии, обусловленная внутриутробной инфекцией и стенозом водопровода мозга. Обследован в связи с прогрессирующими расстройствами статики, походки и координации, прогрессирующей макрокранией. На момент постановки диагноза имелись выраженные признаки внутричерепной гипертензии на глазном дне. Окружность головы 62,5 см (значительно больше возрастной нормы). А – Данные МРТ исследования головного мозга в режиме Т2 до операции. Имеется резко выраженное расширение боковых и 3 желудочков, в области передних и задних рогов боковых желудочков виден перивентрикулярный отек, конвекситальные субарахноидальные пространства компримированы. Б – данные КТ головного мозга спустя 2 недели после хирургического лечения – вентрикулоперитонеостомии регулируемым клапаном с антисифонным устройством, пропускная способность клапана установлена на среднее давление (performance level 1,5). Видно заметное уменьшение размеров желудочковой системы. Резко расширенные конвекситальные субарахноидальные пространства указывают на избыточное дренирование ликвора по шунту. В – данные КТ головного мозга спустя 4 недели после хирургического лечения, пропускная способность клапана установлена на очень высокое давление (performance level 2,5). Размеры желудочков мозга лишь немногим уже предоперационных, конвекситальные субарахноидальные пространства визуализируются, но не расширены. Перивентрикулярного отека нет. При осмотре нейроофтальмолога спустя месяц после операции отмечен регресс застойных дисков зрительных нервов. В катамнезе отмечено уменьшение выраженности всех жалоб.

Аппарат резорбции ликвора представлен арахноидальными грануляциями и ворсинами , он обеспечивает однонаправленное движение ликвора из субарахноидальных пространств в венозную систему. Другими словами, при снижении ликворного давления ниже венозного обратного движения жидкости из венозного русла в субарахноидальные пространства не возникает .

Скорость резорбции ликвора пропорциональна градиенту давления между ликворной и венозной системой, при этом коэффициент пропорциональности характеризует гидродинамическое сопротивление аппарата резорбции, этот коэффициент называют сопротивлением резорбции ликвора (Rcsf). Исследование сопротивления резорбции ликвора бывает важным при диагностике нормотензивной гидроцефалии, его измеряют с помощью люмбального инфузионного теста . При проведении вентрикулярного инфузионного теста этот же параметр называют сопротивлением оттоку ликвора (Rout). Сопротивление резорбции (оттоку) ликвора, как правило, бывает повышенным при гидроцефалии, в отличие от атрофии мозга и краниоцеребральной диспропорции. У здорового взрослого человека сопротивление резорбции ликвора составляет 6-10 мм.рт.ст/(мл/мин), постепенно увеличиваясь с возрастом . Патологическим считают увеличение Rcsf выше 12 мм.рт.ст/(мл/мин).

Венозный отток из полости черепа

Венозный отток из полости черепа осуществляется через венозные синусы твердой мозговой оболочки, откуда кровь попадает в яремные и затем в верхнюю полую вену. Затруднение венозного оттока из полости черепа с повышением внутрисинусного давления приводит к замедлению резорбции ликвора и повышению внутричерепного давления без вентрикуломегалии. Это состояние известно под названием «pseudotumor cerebri» или «доброкачественная внутричерепная гипертензия» .

Внутричерепное давление, колебания внутричерепного давления

Внутричерепное давление - манометрическое давление в полости черепа. Внутричерепное давление сильно зависит от положения тела: в положении лежа у здорового человека оно составляет от 5 до 15 мм рт.ст., в положении стоя - от -5 до +5 мм рт.ст. . В отсутствие разобщения ликворных путей люмбальное ликворное давление в положении лежа равно внутричерепному, при переходе в положение стоя оно увеличивается. На уровне 3-го грудного позвонка при перемене положения тела ликворное давление не меняется . При обструкции ликворных путей (обструктивная гидроцефалия, мальформация Киари) внутричерепное давление при переходе в положение стоя не падает столь значительно, а иногда даже возрастает . После эндоскопической вентрикулостомии ортостатические колебания внутричерепного давления, как правило, приходят в норму . После шунтирующих операций ортостатические колебания внутричерепного давления редко соответствуют норме здорового человека: чаще всего имеется склонность к низким цифрам внутричерепного давления, особенно в положении стоя . В современных шунтирующих системах используется множество приспособлений, призванных решить эту проблему.

Внутричерепное давление в покое в положении лежа наиболее точно описывается модифицированной формулой Davson:

ВЧД = (F * Rcsf) + Pss + ВЧДв,

где ВЧД - внутричерепное давление, F - скорость секреции ликвора, Rcsf - сопротивление резорбции ликвора, ВЧДв - вазогенный компонент внутричерепного давления . Внутричерепное давление в положение лежа не постоянно, колебания внутричерепного давления определяются в основном изменениями вазогенного компонента.

Пациент Ж., 13 лет. Причина гидроцефалии – небольшая глиома четверохолмной пластинки. Обследован в связи с единственным пароксизмальным состоянием, которое можно было интерпретировать как сложный парциальный эпилептический приступ или как окклюзионный приступ. У пациента не было признаков внутричерепной гипертензии на глазном дне. Окружность головы 56 см (возрастная норма). А – данные МРТ исследования головного мозга в режиме Т2 и четырехчасового ночного мониторинга внутричерепного давления до лечения. Имеет место расширение боковых желудочков, конвекситальные субарахноидальные пространства не прослеживаются. Внутричерепное давление (ICP) не повышено (в среднем 15,5 мм рт ст. за время мониторинга), амплитуда пульсовых колебаний внутричерепного давления (CSFPP) повышена (в среднем 6,5 мм рт.ст. за время мониторинга). Видны вазогенные волны ВЧД с пиковыми значениями ВЧД до 40 мм рт ст. Б - данные МРТ исследования головного мозга в режиме Т2 и четырехчасового ночного мониторинга внутричерепного давления спустя неделю после эндоскопической вентрикулостомии 3 желудочка. Размеры желудочков уже, чем до операции, но сохраняется вентрикуломегалия. Конвекситальные субарахноидальные пространства прослеживаются, контур боковых желудочков четкий. Внутричерепное давление (ICP) на предоперационном уровне (в среднем 15,3 мм рт.ст. за время мониторинга), амплитуда пульсовых колебаний внутричерепного давления (CSFPP) снизилась (в среднем 3,7 мм рт.ст. за время мониторинга). Пиковые значение ВЧД на высоте вазогенных волн уменьшились до 30 мм рт ст. При контрольном обследовании спустя год после операции состояние пациента было удовлетворительным, никаких жалоб не было.

Различают следующие колебания внутричерепного давления:

  1. пульсовые волны ВЧД, частота которых соответствует частоте пульса (период 0,3-1,2 секунды), они возникают в результате изменения артериального кровенаполнения мозга в течение сердечного цикла, в норме их амплитуда не превышает 4 мм рт.ст. (в покое). Изучение пульсовых волн ВЧД используется при диагностике нормотензивной гидроцефалии ;
  2. дыхательные волны ВЧД, частота которых соответствует частоте дыхания (период 3-7,5 секунд), возникают в результате изменения венозного кровенаполнения мозга в течение дыхательного цикла, в диагностике гидроцефалии не используются, предложено их использование для оценки краниовертебральных объемных отношений при черепно-мозговой травме ;
  3. вазогенные волны внутричерепного давления (Рис. 2) - физиологический феномен, природа которого изучена плохо. Представляют собой плавные подъемы внутричерепного давления на 10-20 мм рт.ст. от базального уровня с последующим плавным возвращением к исходным цифрам, продолжительность одной волны составляет 5-40 минут, период 1-3 часа. По-видимому, существует несколько разновидностей вазогенных волн обусловленных действием различных физиологических механизмов . Патологическим является отсутствие вазогенных волн по данным мониторинга внутричерепного давления, что встречается при атрофии мозга, в отличие от гидроцефалии и краниоцеребральной диспропорции (так называемая «монотонная кривая внутричерепного давления»).
  4. B-волны - условно патологические медленные волны внутричерепного давления амплитудой 1-5 мм рт.ст., период от 20 секунд до 3 минут, частота их бывает повышена при гидроцефалии , однако специфичность B-волн для диагностики гидроцефалии низка , в связи с чем в настоящее время исследование В-волн для диагностики гидроцефалии не используется.
  5. плато-волны абсолютно патологические волны внутричерепного давления, представляют внезапные быстрые длительные, на несколько десятков минут, повышения внутричерепного давления до 50-100 мм рт.ст. с последующим быстрым возвращением к базальному уровню. В отличие от вазогенных волн, на высоте плато-волн прямая зависимость между внутричерепным давлением и амплитудой его пульсовых колебаний отсутствует, а иногда даже меняется на обратную, снижается церебральное перфузионное давление, нарушается ауторегуляция церебрального кровотока . Плато-волны свидетельствуют о крайнем истощении механизмов компенсации повышенного внутричерепного давления, как правило, наблюдаются лишь при внутричерепной гипертензии.

Разнообразные колебания внутричерепного давления, как правило, не позволяют однозначно интерпретировать результаты одномоментного измерения ликворного давления как патологические или физиологические. У взрослых внутричерепной гипертензией называют повышение среднего внутричерепного давления выше 18 мм рт.ст. по данным длительного мониторинга (не менее 1 часа, но предпочтителен ночной мониторинг) . Наличие внутричерепной гипертензии отличает гипертензивную гидроцефалию от нормотензивной (Рис 1, 2, 3). Следует иметь в виду, что внутричерепная гипертензия может быть субклинической, т.е. не иметь специфических клинических проявлений, например таких, как застойные диски зрительных нервов .

Доктрина Monroe-Kellie и упругость

Доктрина Monroe-Kellie рассматривает полость черепа как замкнутую абсолютно нерастяжимую емкость, заполненную тремя абсолютно несжимаемыми средами: ликвором (в норме - 10% объема полости черепа), кровью в сосудистом русле (в норме около 10% объема полости черепа) и мозгом (в норме 80% объема полости черепа). Увеличение объема любой из составляющих возможно лишь за счет перемещения за пределы полости черепа других составляющих. Так, в систолу при увеличении объема артериальной крови ликвор вытесняется в растяжимый спинальный дуральный мешок, а венозная кровь из вен мозга вытесняется в дуральные синусы и далее за пределы полости черепа; в диастолу ликвор возвращается из спинальных субарахноидальных пространств в интракраниальные, а церебральное венозное русло вновь заполняется . Все эти перемещения не могут свершиться моментально, поэтому, прежде чем они произойдут, приток артериальной крови в полость черепа (равно, как и моментальное введение любого другого упругого объема) приводит повышению внутричерепного давления. Степень повышения внутричерепного давления при введении в полость черепа заданного дополнительного абсолютно несжимаемого объема называется упругостью (E от англ. elastance), она измеряется в мм.рт.ст/мл. Упругость напрямую влияет на амплитуду пульсовых колебаний внутричерепного давления и характеризует компенсаторные возможности ликворной системы . Ясно, что медленное (в течение нескольких минут, часов или дней) введение дополнительного объема в ликворные пространства приведет к заметно менее выраженному повышению внутричерепного давления, чем быстрое введение того же объема. В физиологических условиях при медленном введении дополнительного объема в полость черепа степень повышения внутричерепного давления определяется в основном растяжимостью спинального дурального мешка и объемом церебрального венозного русла, а если речь идет о введении жидкости в ликворную систему (как это имеет место при проведении инфузионного теста с медленной инфузией), то на степень и скорость повышения внутричерепного давления влияет также скорость резорбции ликвора в венозное русло .

Упругость бывает повышена (1) при нарушении перемещения ликвора в пределах субарахноидальных пространств, в частности, при изоляции интракраниальных ликворных пространств от спинального дурального мешка (мальформация Киари, отек мозга после черепно-мозговой травмы, синдром щелевидных желудочков после шунтирующих операций); (2) при затруднении венозного оттока из полости черепа (доброкачественная внутричерепная гипертензия); (3) при уменьшении объема полости черепа (краниостеноз); (4) при появлении дополнительного объема в полости черепа (опухоль, острая гидроцефалия в отсутствие атрофии мозга); 5) при повышении внутричерепного давления .

Низкие значения упругости должны иметь место (1) при увеличении объема полости черепа; (2) при наличии костных дефектов свода черепа (например, после черепно мозговой травмы или резекционной трепанации черепа, при открытых родничках и швах в младенческом возрасте); (3) при увеличении объема церебрального венозного русла, как это бывает при медленно прогрессирующей гидроцефалии; (4) при понижении внутричерепного давления.

Взаимосвязь параметров ликвородинамики и церебрального кровотока

Перфузия ткани мозга в норме составляет около 0,5 мл/(г*мин) . Ауторегуляция - способность поддерживать церебральный кровоток на постоянном уровне вне зависимости от церебрального перфузионного давления. При гидроцефалии нарушения ликвородинамики (внутричерепная гипертензия и усиленная пульсация ликвора) приводят к снижению перфузии мозга и нарушению ауторегуляции церебрального кровотока (отсутствует реакция в пробе с СО2, О2, ацетазоламидом); при этом нормализация параметров ликвородинамики посредством дозированного выведения ликвора приводит к немедленному улучшению церебральной перфузии и ауторегуляции церебрального кровотока . Это имеет место как при гипертензивной , так и при нормотензивной гидроцефалии . В отличие от этого, при атрофии мозга, в тех случаях, когда имеются нарушения перфузии и ауторегуляции, в ответ на выведение ликвора их улучшения не происходит .

Механизмы страдания мозга при гидроцефалии

Параметры ликвородинамики влияют на работу мозга при гидроцефалии в основном опосредованно через нарушение перфузии. Кроме того, считают, что повреждение проводящих путей отчасти бывает обусловлено их перерастяжением . Распространено мнение, что основной непосредственной причиной снижения перфузии при гидроцефалии является внутричерепное давление. Вопреки этому, есть основания полагать, что не меньший, а возможно и больший вклад в нарушение церебрального кровообращения вносит повышение амплитуды пульсовых колебаний внутричерепного давления, отражающее повышенную упругость .

При остром заболевании гипоперфузия вызывает, в основном, лишь функциональные изменения церебрального метаболизма (нарушение энергообмена, снижение уровней фосфокреатинина и АТФ, повышение содержания неорганических фосфатов и лактата), и в этой ситуации все симптомы обратимы . При длительной болезни в результате хронической гипоперфузии в мозге возникают необратимые изменения: повреждение эндотелия сосудов и нарушение гематоэнцефалического барьера , повреждение аксонов вплоть до их дегенерации и исчезновения, демиелинизация. У младенцев нарушается миелинизация и этапность формирования проводящих путей головного мозга . Повреждения нейронов обычно менее значительны и возникают в более поздних стадиях гидроцефалии. При этом можно отметить как микроструктурные изменения нейронов, так и уменьшение их количества . В поздних стадиях гидроцефалии отмечается редукция капиллярной сосудистой сети головного мозга . При длительном течении гидроцефалии всё вышеперечисленное в конечном итоге приводит к глиозу и уменьшению массы мозга, то есть к его атрофии. Хирургическое лечение приводит к улучшению кровотока и метаболизма нейронов, восстановлению миелиновых оболочек и микроструктурных повреждений нейронов, однако количество нейронов и поврежденных нервных волокон заметно не меняется, глиоз также сохраняется после лечения . Поэтому при хронической гидроцефалии значительная часть симптомов оказывается необратимой. Если гидроцефалия возникает в младенчестве, то нарушение миелинизации и этапности созревания проводящих путей также ведут к необратимым последствиям.

Непосредственная связь сопротивления резорбции ликвора с клиническими проявлениями не доказана, однако, некоторые авторы предполагают, что замедление циркуляции ликвора, ассоциированное с повышением сопротивления резорбции ликвора, может приводить к накоплению в ликворе токсических метаболитов и таким образом негативно влиять на работу мозга .

Определение гидроцефалии и классификация состояний с вентрикуломегалией

Вентрикуломегалия - расширение желудочков мозга. Вентрикуломегалия всегда имеет место при гидроцефалии, но встречается также и в ситуациях, не требующих хирургического лечения: при атрофии мозга и при краниоцеребральной диспропорции. Гидроцефалия - увеличение объема ликворных пространств, обусловленное нарушением ликвороциркуляции . Отличительные черты этих состояний суммированы в таблице 1 и проиллюстрированы рисунками 1-4. Приведенная классификация в значительной степени условна, поскольку перечисленные состояния зачастую сочетаются друг с другом в различных комбинациях.

Классификация состояний с вентрикуломегалией

Атрофия - уменьшение объема мозговой ткани, не связанное с компрессией извне. Атрофия мозга может быть изолированной (старческий возраст, нейродегенеративные заболевания), но кроме этого в той или иной степени атрофия имеет место у всех пациентов с хронической гидроцефалией (рис. 2-4).

Больной К, 17 лет. Обследован спустя 9 лет после тяжелой черепно-мозговой травмы в связи с появившимися в течение 3 лет жалобами на головные боли, эпизоды головокружения, эпизоды вегетативной дисфункции в виде ощущения приливов. На глазном дне признаков внутричерепной гипертензии нет. А – данные МРТ головного мозга. Имеет место выраженное расширение боковых и 3 желудочков, перивентрикулярного отека нет, субарахноидальные щели прослеживаются, но умеренно задавлены. Б – данные 8-часового мониторинга внутричерепного давления. Внутричерепное давление (ICP) не повышено, составляет в среднем 1,4 мм рт.ст., амплитуда пульсовых колебаний внутричерепного давления (CSFPP) не повышена, составляет в среднем 3,3 мм рт.ст. В – данные люмбального инфузионного теста с постоянной скоростью инфузии 1,5 мл/мин. Серым выделен период субарахноидальной инфузии. Сопротивление резорбции ликвора (Rout) не повышено и составляет 4,8 мм рт.ст./(мл/мин). Г – результаты инвазивных исследований ликвородинамики. Таким образом, имеют место посттравматическая атрофия головного мозга и краниоцеребральная диспропорция; показаний к хирургическому лечению нет.

Краниоцеребральная диспропорция - несоотвествие размеров полости черепа размерам головного мозга (избыточный объем полости черепа). Краниоцеребральная диспропорция возникает вследствие атрофии мозга, макрокрании, а также после удаления крупных опухолей мозга, особенно доброкачественных. Краниоцеребральная диспропорция также лишь изредка встречается в чистом виде, чаще она сопровождает хроническую гидроцефалию и макрокранию. Она не требует лечения сама по себе, однако ее наличие нужно учитывать при лечении пациентов с хронической гидроцефалией (рис. 2-3).

Заключение

В этой работе, на основе данных современной литературы и собственного клинического опыта автора в доступной и сжатой форме представлены основные физиологические и патофизиологические концепции, используемые при диагностике и лечении гидроцефалии.

Библиография

  1. Барон М.А. и Майорова Н.А. Функциональная стереоморфология мозговых оболочек, М., 1982
  2. Коршунов А. Е. Программируемые шунтирующие системы в лечении гидроцефалии. Ж. Вопр. Нейрохир. им. Н.Н. Бурденко. 2003(3):36-39.
  3. Коршунов АЕ, Шахнович АР, Меликян АГ, Арутюнов НВ, Кудрявцев ИЮ.Ликвородинамика при хронической обструктивной гидроцефалии до и после успешной эндоскопической вентрикулостомии III желудочка. Ж. Вопр. Нейрохир. им. Н.Н. Бурденко. 2008(4):17-23; обуждение 24.
  4. Шахнович А.Р., Шахнович В.А. Гидроцефалия и внутричерепная гипертензия. Отек и набухание мозга. Гл. в кн. «Диагностика нарушений мозгового кровообращения: транскраниальная допплерография» Москва:1996, С290-407.
  5. Шевчиковский Е, Шахнович АР, Коновалов АН, Томас ДГ, Корсак-Сливка И. Использование ЭВМ для интенсивного наблюдения за состоянием больных в нейрохирургической клинике. Ж Вопр Нейрохир им. Н.Н. Бурденко 1980; 6-16.
  6. Albeck MJ, Skak C, Nielsen PR, Olsen KS, Bшrgesen SE, Gjerris F.Age dependency of resistance to cerebrospinal fluid outflow.J Neurosurg. 1998 Aug;89(2):275-8.
  7. Avezaat CJ, van Eijndhoven JH. Clinical observations on the relationship between cerebrospinal fluid pulse pressure and intracranial pressure. Acta Neurochir (Wien) 1986; 79:13-29.
  8. Barkhof F, Kouwenhoven M, Scheltens P, Sprenger M, Algra P, Valk J. Phase-contrast cine MR imaging of normal aqueductal CSF flow. Effect of aging and relation to CSF void on modulus MR. Acta Radiol. 1994 Mar;35(2):123-30.
  9. Bauer DF, Tubbs RS, Acakpo-Satchivi L.Mycoplasma meningitis resulting in increased production of cerebrospinal fluid: case report and review of the literature. Childs Nerv Syst. 2008 Jul;24(7):859-62. Epub 2008 Feb 28. Review.
  10. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 1999 Jul;19(7):701-35.
  11. Catala M. Developement of the Cerebrospinal Fluid Pathways During Embryonic and Fetal Life in Humans. in Cinally G., "Pediatric Hydrocephalus" edited by Maixner W.J., Sainte-Rose C. Springer-Verlag Italia, Milano 2004, pp.19-45.
  12. Carey ME, Vela AR. Effect of systemic arterial hypotension on the rate of cerebrospinal fluid formation in dogs. J Neurosurg. 1974 Sep;41(3):350-5.
  13. Carrion E, Hertzog JH, Medlock MD, Hauser GJ, Dalton HJ. Use of acetazolamide to decrease cerebrospinal fluid production in chronically ventilated patients with ventriculopleural shunts. Arch Dis Child. 2001 Jan;84(1):68-71.
  14. Castejon OJ. Transmission electron microscope study of human hydrocephalic cerebral cortex. J Submicrosc Cytol Pathol. 1994 Jan;26(1):29-39.
  15. Chang CC, Asada H, Mimura T, Suzuki S. A prospective study of cerebral blood flow and cerebrovascular reactivity to acetazolamide in 162 patients with idiopathic normal-pressure hydrocephalus. J Neurosurg. 2009 Sep;111(3):610-7.
  16. Chapman PH, Cosman ER, Arnold MA.The relationship between ventricular fluid pressure and body position in normal subjects and subjects with shunts: a telemetric study.Neurosurgery. 1990 Feb;26(2):181-9.
  17. Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard JD. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997 Dec;63(6):721-31.
  18. Czosnyka M, Smielewski P, Piechnik S, Schmidt EA, Al-Rawi PG, Kirkpatrick PJ, Pickard JD. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J Neurosurg. 1999 Jul;91(1):11-9.
  19. Czosnyka M., Czosnyka Z.H., Whitfield P.C., Pickard J.D. Cerebrospinal Fluid Dynamics. in Cinally G., "Pediatric Hydrocephalus" edited by Maixner W.J., Sainte-Rose C. Springer-Verlag Italia, Milano 2004, pp47-63.
  20. Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004 Jun;75(6):813-21.
  21. Czosnyka M, Smielewski P, Timofeev I, Lavinio A, Guazzo E, Hutchinson P, Pickard JD. Intracranial pressure: more than a number. Neurosurg Focus. 2007 May 15;22(5):E10.
  22. Da Silva M.C. Pathophysiology of hydrocephalus. in Cinally G., "Pediatric Hydrocephalus" edited by Maixner W.J., Sainte-Rose C. Springer-Verlag Italia, Milano 2004, pp65-77.
  23. Dandy W.E. Extirpation of the choroid plexus of the lateral ventricles. Ann Surg 68:569-579, 1918
  24. Davson H., Welch K., Segal M.B. The physiology and pathophysiology of cerebrospinal fluid. Churchill Livingstone, New York, 1987.
  25. Del Bigio MR, da Silva MC, Drake JM, Tuor UI. Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Can J Neurol Sci. 1994 Nov;21(4):299-305.
  26. Eide PK, Brean A. Intracranial pulse pressure amplitude levels determined during preoperative assessment of subjects with possible idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2006; 148:1151-6.
  27. Eide PK, Egge A, Due-Tшnnessen BJ, Helseth E. Is intracranial pressure waveform analysis useful in the management of pediatric neurosurgical patients? Pediatr Neurosurg. 2007;43(6):472-81.
  28. Eklund A, Smielewski P, Chambers I, Alperin N, Malm J, Czosnyka M, Marmarou A. Assessment of cerebrospinal fluid outflow resistance. Med Biol Eng Comput. 2007 Aug;45(8):719-35. Epub 2007 Jul 17. Review.
  29. Ekstedt J. CSF hydrodynamic studies in man. 2 . Normal hydrodynamic variables related to CSF pressure and flow.J Neurol Neurosurg Psychiatry. 1978 Apr;41(4):345-53.
  30. Fishman RA. Cerebrospinal fluid in diseases of the central nervous system. 2 ed. Phyladelphia: W.B. Saunders Company, 1992
  31. Janny P: La Pression Intracranienne Chez l"Homme. Thesis. Paris: 1950
  32. Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008 May 14;5:10.
  33. Jones HC, Bucknall RM, Harris NG. The cerebral cortex in congenital hydrocephalus in the H-Tx rat: a quantitative light microscopy study. Acta Neuropathol. 1991;82(3):217-24.
  34. Karahalios DG, Rekate HL, Khayata MH, Apostolides PJ: Elevated intracranial venous pressure as a universal mechanism in pseudotumor cerebri of varying etiologies. Neurology 46:198–202, 1996
  35. Lee GH, Lee HK, Kim JK et al. CSF Flow Quantification of the Cerebral Aqueduct in Normal Volunteers Using Phase Contrast Cine MR Imaging Korean J Radiol. 2004 Apr–Jun; 5(2): 81–86.
  36. Lindvall M, Edvinsson L, Owman C. Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science. 1978 Jul 14;201(4351):176-8.
  37. Lindvall-Axelsson M, Hedner P, Owman C. Corticosteroid action on choroid plexus: reduction in Na+-K+-ATPase activity, choline transport capacity, and rate of CSF formation. Exp Brain Res. 1989;77(3):605-10.
  38. Lundberg N: Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psych Neurol Scand; 36(Suppl 149):1–193, 1960.
  39. Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975 Nov;43(5):523-34.
  40. Marmarou A, Maset AL, Ward JD, Choi S, Brooks D, Lutz HA, et al. Contribution of CSF and vascular factors to elevation of ICP in severely head- injured patients. J Neurosurg 1987; 66:883-90.
  41. Marmarou A, Bergsneider M, Klinge P, Relkin N, Black PM. The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005 Sep;57(3 Suppl):S17-28; discussion ii-v. Review.
  42. May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI. Cerebrospinal fluid production is reduced in healthy aging. Neurology. 1990 Mar;40(3 Pt 1):500-3.
  43. Meyer JS, Tachibana H, Hardenberg JP, Dowell RE Jr, Kitagawa Y, Mortel KF. Normal pressure hydrocephalus. Influences on cerebral hemodynamic and cerebrospinal fluid pressure--chemical autoregulation. Surg Neurol. 1984 Feb;21(2):195-203.
  44. Milhorat TH, Hammock MK, Davis DA, Fenstermacher JD. Choroid plexus papilloma. I. Proof of cerebrospinal fluid overproduction. Childs Brain. 1976;2(5):273-89.
  45. Milhorat TH, Hammock MK, Fenstermacher JD, Levin VA.Cerebrospinal fluid production by the choroid plexus and brain. Science. 1971 Jul 23;173(994):330-2.
  46. Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD.Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004 May;127(Pt 5):965-72. Epub 2004 Mar 19.
  47. Mori K, Maeda M, Asegawa S, Iwata J. Quantitative local cerebral blood flow change after cerebrospinal fluid removal in patients with normal pressure hydrocephalus measured by a double injection method with N-isopropyl-p-[(123)I] iodoamphetamine.Acta Neurochir (Wien). 2002 Mar;144(3):255-62; discussion 262-3.
  48. Nakada J, Oka N, Nagahori T, Endo S, Takaku A. Changes in the cerebral vascular bed in experimental hydrocephalus: an angio-architectural and histological study. Acta Neurochir (Wien). 1992;114(1-2):43-50.
  49. Plum F, Siesjo BK.Recent advances in CSF physiology. Anesthesiology. 1975 Jun;42(6):708-730.
  50. Poca MA, Sahuquillo J, Topczewski T, Lastra R, Font ML, Corral E. Posture-induced changes in intracranial pressure: a comparative study in patients with and without a cerebrospinal fluid block at the craniovertebral junction. Neurosurgery 2006; 58:899-906.
  51. Rekate HL. The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res. 2008 Jan 22;5:2.
  52. Shirane R, Sato S, Sato K, Kameyama M, Ogawa A, Yoshimoto T, Hatazawa J, Ito M. Cerebral blood flow and oxygen metabolism in infants with hydrocephalus. Childs Nerv Syst. 1992 May;8(3):118-23.
  53. Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, Rubenstein E, Possin K, Saul TA.The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer"s type. Neurology. 2001 Nov 27;57(10):1763-6.
  54. Smith ZA, Moftakhar P, Malkasian D, Xiong Z, Vinters HV, Lazareff JA. Choroid plexus hyperplasia: surgical treatment and immunohistochemical results. Case report. J Neurosurg. 2007 Sep;107(3 Suppl):255-62.
  55. Stephensen H, Andersson N, Eklund A, Malm J, Tisell M, Wikkelsц C. Objective B wave analysis in 55 patients with non-communicating and communicating hydrocephalus. J Neurol Neurosurg Psychiatry. 2005 Jul;76(7):965-70.
  56. Stoquart-ElSankari S, Balйdent O, Gondry-Jouet C, Makki M, Godefroy O, Meyer ME. Aging effects on cerebral blood and cerebrospinal fluid flows J Cereb Blood Flow Metab. 2007 Sep;27(9):1563-72. Epub 2007 Feb 21.
  57. Szewczykowski J, Sliwka S, Kunicki A, Dytko P, Korsak-Sliwka J. A fast method of estimating the elastance of the intracranial system. J Neurosurg. 1977 Jul;47(1):19-26.
  58. Tarnaris A, Watkins LD, Kitchen ND. Biomarkers in chronic adult hydrocephalus. Cerebrospinal Fluid Res. 2006 Oct 4;3:11.
  59. Unal O, Kartum A, Avcu S, Etlik O, Arslan H, Bora A. Cine phase-contrast MRI evaluation of normal aqueductal cerebrospinal fluid flow according to sex and age Diagn Interv Radiol. 2009 Oct 27. doi: 10.4261/1305-3825.DIR.2321-08.1. .
  60. Weiss MH, Wertman N. Modulation of CSF production by alterations in cerebral perfusion pressure. Arch Neurol. 1978 Aug;35(8):527-9.

Спинномозгова́я жидкость (цереброспина́льная жидкость, ли́квор) - жидкость, постоянно циркулирующая в желудочках головного мозга, ликворопроводящих путях, субарахноидальном (подпаутинном) пространстве головного и спинного мозга. Предохраняет головной и спинной мозг от механических воздействий, обеспечивает поддержание постоянного внутричерепного давления и водно-электролитного гомеостаза. Поддерживает трофические и обменные процессы между кровью и мозгом. Флуктуация ликвора оказывает влияние на вегетативную нервную систему. Основной объём цереброспинальной жидкости образуется путём активной секреции железистыми клетками сосудистых сплетений в желудочках головного мозга. Другим механизмом образования цереброспинальной жидкости является пропотевание плазмы крови через стенки кровеносных сосудов и эпендиму желудочков.

Ликвор- жидкая среда, циркулирующая в полостях желудочков головного мозга, ликворопроводящих путях, субарахноидальном пространстве головного и спинного мозга. Общее содержание ликвора в организме 200 - 400 мл. Цереброспинальная жидкость заключена в основном в боковых, III и IV желудочках головного мозга, Сильвиевом водопроводе, цистернах головного мозга и в субарахноидальном пространстве головного и спинного мозга.

Процесс ликворообращения в ЦНС включает 3 основных звена:

1). Продукцию (образование) ликвора.

2). Циркуляцию ликвора.

3). Отток ликвора.

Движение ликвора осуществляется поступательными и колебательными движениями, ведущими к периодическому её обновлению, совершающемуся с различной скоростью (5 - 10 раз в сутки). Что зависит у человека от суточного режима, нагрузки на ЦНС и от колебаний в интенсивности физиологических процессов в организме. Циркуляция ликвора происходит постоянно, из боковых желудочков мозга через отверстие Монро он поступает в III желудочек, а затем через Сильвиев водопровод оттекает в IV желудочек. Из IV желудочка, через отверстие Люшки и Мажанди, большая часть ликвора переходит в цистерны основания мозга (мозжечково-мозговую, охватывающую цистерны моста, межножковую цистерну, цистерну перекрёста зрительных нервов и другие). Достигает Сильвиевой (боковой) борозды и поднимается в субарахноидальное пространство конвекситольной поверхности полушарий головного мозга - это так называемый боковой путь циркуляции ликвора.

В настоящие время установлено, что существует и другой путь циркуляции цереброспинальной жидкости из мозжечково-мозговой цистерны в цистерны червя мозжечка, через охватывающую цистерну в субарахноидальное пространство медиальных отделов полушарий головного мозга - это так называемый центральный путь циркуляции ликвора. Меньшая часть ликвора из мозжечково-мозговой цистерны спускается каудально в субарахноидальное пространство спинного мозга, достигает конечной цистерны.

28-29. Спинной мозг, форма, топография. Основные отделы спинного мозга. Шейное и пояснично-крестцовое утолщения спинного мозга. Сегменты спинного мозга.Спинной мозг (лат. Medulla spinalis ) - каудальная часть (хвостовая) ЦНС позвоночных, расположенная в образованном невральными дугами позвонков позвоночном канале. Принято считать, что граница между спинным и головным мозгом проходит на уровне перекрёста пирамидных волокон (хотя эта граница весьма условна). Внутри спинного мозга имеется полость, называемая центральным каналом. Спинной мозг защищён мягкой , паутинной и твёрдой оболочками. Пространства между оболочками и канал заполнены спинномозговой жидкостью. Пространство между внешней твёрдой оболочкой и костью позвонков называется эпидуральным и заполнено жиром и венозной сетью. Шейное утолщение – нервы к рукам, крестцово – поясничное – к ногам. Шейный С1-С8 7 позвонков; Грудной Th1-Th12 12(11-13); Поясничный L1-L5 5(4-6); Крестцовый S1-S5 5(6); Копчиковый Со1 3-4.

30.Корешки спинномозговых нервов. Спинномозговые нервы. Концевая нить и конский хвост. Образование спинальных ганглиев. корешок спинномозгового нерва(radix nervi spinalis)-пучок нервных волокон, входящих и выходящих из какого либо сегмента спинного мозга и образующих спинномозговой нерв. Спинномозговые или спинальные нервы берут начало в спинном мозге и выходят из него между соседними позвонками почти по всей длине позоночника. В их состав входят и сенсорные нейроны, и моторные нейроны, поэтому их называют смешанными нервами. Смешанные нервы - нервы, передающие импульсы как от центральной нервной системы к периферии, так и в обратном направлении, например, тройничный, лицевой, языкоглоточный, блуждающий и все спинномозговые нервы. Спинно-мозговые нервы (31 пара) формируются из двух корешков, отходящих от спинного мозга - переднего корешка (эфферентного) и заднего (афферентного) , которые, соединяясь между собой в межпозвоночном отверстии, образуют ствол спинномозгового нерва См. рис. 8 . Спинно-мозговые нервы это 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковый нерв. Спинно-мозговые нервы соответствуют сегментам спинного мозга. К заднему корешку прилежит чувствительный спинномозговой узел, образованный телами крупных афферентных Т-образных нейронов. Длинный отросток (дендрит) направляется на периферию, где заканчивается рецептором, а короткий аксон в составе заднего корешка входит в задние рога спинного мозга. Волокна обоих корешков (переднего и заднего) образуют смешанные спинно-мозговые нервы, содержащие чувствительные, двигательные и вегетативные (симпатические) волокна. Последние имеются не во всех боковых рогах спинного мозга, а только в VIII шейном, всех грудных и I - II поясничных нервах. В грудном отделе нервы сохраняют сегментарное строение (межреберные нервы), а в остальных соединяются друг с другом петлями, образуя сплетения: шейное, плечевое, поясничное, крестцовое и копчиковое, от которых отходят периферические нервы, иннервирующие кожу и скелетные мышцы (рис. 228). На передней (вентральной) поверхности спинного мозга залегает глубокая передняя срединная щель, по бокам которой находятся менее глубокие переднебоковые борозды. Из переднебоковой борозды или вблизи от нее выходят передние (вентральные) корешки спинномозговых нервов. Передние корешки содержат эфферентные волокна (центробежные) , которые являются отростками двигательных нейронов, проводящих импульсы к мышцам, железам и на периферию тела. На задней (дорсальной) поверхности хорошо видна задняя срединная борозда. По бокам от нее находятся заднебоковые борозды, в которые входят задние (чувствительные) корешки спинномозговых нервов. Задние корешки содержат афферентные (центростремительные) нервные волокна, проводящие чувствительные импульсы от всех тканей и органов тела в ЦНС. Задний корешок формирует спинномозговой ганглий (узел) , который представляет собой скопление тел псевдоуниполярных нейронов. Отойдя от такого нейрона, отросток Т-образно разделяется. Один из отростков - длинный - направляется на периферию в составе спинномозгового нерва и оканчивается чувствительным нервным окончанием. Другой отросток - короткий - следует в составе заднего корешка в спинной мозг. Спинномозговые ганглии (узлы) окружены твердой мозговой оболочкой и залегают внутри позвоночного канала в межпозвоночных отверстиях.

31.Внутренне строение спинного мозга. Серое вещество. Чувствительные и двигательные рога серого вещества спинного мозга. Ядра серого вещества спинного мозга. Спинной мозг состоит из серого вещества, образованного скоплением тел нейронов и их дендритов, и покрывающего его белого вещества, состоящего из нейритов.I. Серое вещество , занимает центральную часть спинного мозга и образует в нем две вертикальные колонны по одной в каждой половине, соединяющиеся серыми спайками (передней и задней). СЕРОЕ ВЕЩЕСТВО МОЗГА, нервная ткань темного цвета, из которой состоит КОРА ГОЛОВНОГО МОЗГА. Присутствует также в СПИННОМ МОЗГЕ. Отличается от так называемого белого вещества тем, что содержит больше нервных волокон (НЕЙРОНОВ) и большое количество беловатого изолирующего материала, называемого МИЕЛИН.
РОГА СЕРОГО ВЕЩЕСТВА.
В сером веществе каждой из боковых частей спинного мозга различают три выступа. На протяжении всего спинного мозга эти выступы образуют серые столбы. Выделяют передний, задний и боковой столбы серого вещества. Каждый из них на поперечном разрезе спинного мозга получает название соответственно

Переднего рога серого вещества спинного мозга,

Заднего рога серого вещества спинного мозга

Бокового рога серого вещества спинного мозга Передние рога серого вещества спинного мозга содержат крупные двигательные нейроны. Аксоны этих нейронов, выходя из спинного мозга, составляют передние (двигательные) корешки спинномозговых нервов. Тела двигательных нейронов образуют ядра эфферентных соматических нервов, иннервирующих скелетную мускулатуру (аутохтонная мускулатура спины, мышцы туловища и конечностей). При этом чем дистальнее расположены иннервируемые мышцы, тем латеральнее лежат иннервирующие их клетки.
Задние рога спинного мозга образованы относительно мелкими вставочными (переключательными, кондукторными) нейронами, которые воспринимают сигналы от чувствительных клеток, лежащих в спинномозговых ганглиях. Клетки задних рогов (вставочные нейроны) образуют отдельные группы, так называемые соматические чувствительные столбы. В боковых рогах находятся висцеральные моторные и чувствительные центры. Аксоны этих клеток проходят через передний рог спинного мозга и выходят из спинного мозга в составе передних корешков. ЯДРА СЕРОГО ВЕЩЕСТВА.
Внутреннее строение продолговатого мозга. Продолговатый мозг возник в связи с развитием органов гравитации и слуха, а также в связи с жаберным аппаратом, имеющим отношение к дыханию и кровообращению. Поэтому в нем заложены ядра серого вещества, имеющие отношение к равновесию, координации движений, а также к регуляции обмена веществ, дыхания и кровообращения.
1. Nucleus olivaris, ядро оливы, имеет вид извитой пластинки серого вещества, открытой медиально (hilus), и обусловливает снаружи выпячивание оливы. Оно связано с зубчатым ядром мозжечка и является промежуточным ядром равновесия, наиболее выраженным у человека, вертикальное положение которого нуждается в совершенном аппарате гравитации. (Встречается еще nucleus olivaris accessorius medialis.) 2. Formatio reticularis, ретикулярная формация, образующаяся из переплетения нервных волокон и лежащих между ними нервных клеток. 3. Ядра четырех пар нижних черепных нервов (XII -IX), имеющие отношение к иннервации производных жаберного аппарата и внутренностей. 4. Жизненно важные центры дыхания и кровообращения, связанные с ядрами блуждающего нерва. Поэтому при повреждении продолговатого мозга может наступить смерть.

32. Белое вещество спинного мозга: строение и функции.

Белое вещество спинного мозга представлено отростками нервных клеток, которые составляет тракты, или проводящие пути спинного мозга:

1) короткие пучки ассоциативных волокон, связывающие сегменты спинного мозга, расположенные на различных уровнях;

2) восходящие (афферентные, чувствительные) пучки, направляющиеся к центрам большого мозга и мозжечка;

3) нисходящие (эфферентные, двигательные) пучки, идущие от головного мозга к клеткам передних рогов спинного мозга.

Белое вещество спинного мозга располагается по периферии серого вещества спинного мозга и представляет собой совокупность миелинизированных и отчасти маломиелинизированных нервных волокон, собранных в пучки. В белом веществе спинного мозга расположены нисходящие волокна (идущие из головного мозга) и восходящие волокна, которые начинаются от нейронов спинного мозга и проходят в головной мозг. По нисходящим волокнам передается преимущественно информация от моторных центров головного мозга к мотонейронам (двигательным клеткам) спинного мозга. По восходящим волокнам поступает информация как от соматических, так и от висцеральных чувствительных нейронов. Расположение восходящих и нисходящих волокон носит закономерный характер. На спинной (дорсальной) стороне расположены преимущественно восходящие волокна, а на брюшной (вентральной) - нисходящие волокна.

Борозды спинного мозга разграничивают белое вещество каждой половины на передний канатик белого вещества спинного мозга, боковой канатик белого вещества спинного мозга и задний канатик белого вещества спинного мозга

Передний канатик ограничен передней срединной щелью и переднебоковой бороздой. Боковой канатик расположен между переднебоковой бороздой и заднебоковой бороздой. Задний канатик находится между задней срединной бороздой и заднебоковой бороздой спинного мозга.

Белое вещество обеих половин спинного мозга связано двумя комиссурами (спайками): дорсальной, лежащей под восходящими путями, и вентральной, находящейся рядом с моторными столбами серого вещества.

В составе белого вещества спинного мозга различают 3 группы волокон (3 системы проводящих путей):

Короткие пучки ассоциативных (межсегментных) волокон, связывающие участки спинного мозга на различных уровнях;

Длинные восходящие (афферентные, чувствительные) проводящие пути, которые идут от спинного мозга к головному;

Длинные нисходящие (эфферентные, двигательные) проводящие пути, идущие от головного мозга к спинному.

Человеческий организм – это совершенный, четко работающий, слаженный биологический механизм. Каждая клеточная структура, ткань, система органов и метаболиты необходимы для определенных целей и в конкретном количестве.

К продуцируемым нашим телом соединениям относят биологические вещества, которые выполняют массу важных функций: защитных и регуляторных. Выделяемый объем, состав, цвет и другие характеристики могут подсказать, здоров человек или стоит задуматься о визите к врачу. Наиболее значимыми эссенциями считают грудное молоко, молозиво, кровь, сперму, слюну, мочу, вагинальные выделения, а также ликвор, о котором сегодня пойдет речь.

Что такое ликвор, определение ликвора

Спинномозговая, или цереброспинальная жидкость (СМЖ, или ЦСЖ) – это жидкая среда, которая заполняет пространство в желудочках головного мозга, течет по ликворопроводящему пути, циркулирует в субарахноидальном сегменте. Альтернативное название – ликвор .

Синтез и выделение вещества обусловлено процессом фильтрации плазмы (жидкой части крови) через капиллярную стенку и последующей секрецией веществ в экссудат из эпендимных и секреторных клеточных структур.

Если присутствует какое-либо патологическое состояние с нарушением целостности и строения костной и мягкой ткани черепной коробки, то возникает ликворея – выделение спинномозговой жидкости из ушей, носа или дефектных, поврежденных мест черепа и позвоночника. Вероятные причины:

    черепно-мозговая травма;

    грыжевые новообразования или опухоли;

    неаккуратность врачебных манипуляций;

    послеоперационная слабость швов.

Любое отклонение от нормы в функционировании системы органов сказывается на густоте, прозрачности и количестве выделяемой субстанции, поэтому по ее состоянию можно определить некоторые патологии.

Функции ликвора

Как и каждая субстанция в человеческом теле, СМЖ выполняет массу жизненно важных функций:

    Механическая защита. Обеспечение амортизирующего эффекта при резких движениях или ударах головой – выравнивая внутричерепное давление, спинномозговая жидкость предохраняет мозг от повреждений, обеспечивая его целостность и нормальную работу даже в травмоопасных ситуациях.

    Экскреция метаболитов. Некоторые вещества могут скапливаться в мозговом пространстве, что будет негативно сказываться не его функционировании – ликвор отвечает за их выделение (экскрецию) и отток.

    Транспорт необходимых соединений. Гормоны, биологически активные субстанции и метаболиты, которые отвечают за центральную работоспособность, переносятся к серому веществу именно с помощью цереброспинальной субстанции.

    Дыхание (выполнение респираторной функции). Нейрональные скопления, которые отвечают за дыхательную функцию организма, расположены на самом дне четвертого желудочка ГМ и омываются ликвором. Стоит незначительно изменить компонентное соотношение (например, увеличить концентрацию калиевых или натриевых ионов), последует изменение амплитуды и частоты вдохов/выдохов.

    Выполнение роли регулятора, стабилизирующей структуры для ЦНС.. Именно СМЖ поддерживает определенную кислотность, солевой и катионно-анионный состав, постоянство осмотического давления в тканях.

    Поддержание стабильности мозгового окружения. Этот барьер обязан быть практически нечувствительным к изменениям химического состава крови, чтобы мозг продолжал работать и во время того, как человек болеет или борется с патологией.

    Работа естественным иммунорегуляторов. Оценить состояние нервной системы и проследить ход заболеваний удастся оценить лишь с помощью детального анализа пунктата, исследование которого поможет уточнить диагноз или прогнозировать состояние здоровья пациента.

Состав ликвора

Цереброспинальная субстанция производится, в среднем, со скоростью около 0,40-0,45 мл в минуту (у взрослого). Объем, скорость продукции, а самое главное – компонентный состав ЦСЖ непосредственно зависит от метаболической активности и возраста организма. Обычно анализы отражают, что чем старше человек – тем сильнее снижено продуцирование.

Эта субстанция синтезируется из плазменной части крови, однако и субстрат, и продуцент существенно отличаются по ионному и клеточному содержанию. Основные компоненты:

    Белок.

    Глюкоза.

    Катионы: ионы натрия, калия, кальция и магния.

    Анионы: ионы хлора.

    Цитоз (наличие клеток в ликворе).

Повышенное содержание белка и клеточных скоплений указывает на отклонение от нормы, а значит – это состояние, что требует дальнейших анализов и обязательной консультации с лечащим врачом.

Анализ и исследования ликвора

Исследование церебрально-спинного пунктата – это метод, который применяют для выявления и диагностики различных расстройств мозговых структур и оболочек, центральной нервной системы. К таким патологиям относится:

    менингит, туберкулезный менингит;

    воспалительные процессы в оболочке;

    опухолевые образования;

    энцефалит;

    сифилис.

Проведение процедуры анализа и исследования СМ жидкости требует забора пробы в качестве пунктата из поясничного отдела спинного мозга. Забор производится через маленький точечный прокол в требуемой области позвоночника.

В полный анализ ЦСЖ входит макроскопическое и микроскопическое исследование, а также цитология, биохимия, бактериоскопия и бактериальный посев на питательную среду.

Исследовать спинномозговую пункцию будут по нескольким параметрам:

    Прозрачность.

Ликвор здорового человека абсолютно прозрачна, как чистая вода, поэтому при макроскопическом анализе ее сравнивают с эталоном – дистиллированной высокоочищенной водой в хорошем освещении. Если взятая проба недостаточно прозрачна или присутствует сильное, явное помутнение, то есть причина искать болезнь. После обнаружения несоответствия эталону, пробирка направляется в центрифугу – процедура позволит определить природу помутнения:

    Если после центрифугирования образец все еще мутный, то это указывает на бактериальное загрязнение.

    Если осадок опустился на дно колбы, то помутнение дали форменные элементы крови или другие клетки.

    Цвет.

Ликвор, производимый здоровым организмом, должен быть абсолютно бесцветным. Изменение показывает наличие в нем каких-либо соединений, которые в норме не должны там находится – многие патологические состояния организма провоцирует ксантохромию СМЖ, то есть, ее окрашивание в оттенки красного и оранжевого. Ксантохромия вызывается попаданием гемоглобина и его видов в пробу, например:

    желтоватость – наличие билирубиновой фракции,выделенная в ходе распада гемоглобина;

    светло-розовая, красно-розовая оттеняемость указывает на оксигемоглобин (гемоглобин, насыщенный кислородом) в ликворе;

    оранжевые оттенки – в пробе присутствуют билирубиновые соединения, появившиеся вследствие распада оксигемоглобина;

    бурые цвета — отражают наличие метгемоглобина (окисленная форма гемоглобина) – такое состояние наблюдается при опухолевых явлениях, инсультах;

    мутная зеленая, оливковая – присутствие гноя при гнойном менингите или после вскрытия абсцесса.

    краснота отражает наличие крови.

Если в образец попало немного сукровицы во время забора пунктата, то такая смесь считается «путевой» и не влияет на результат макроскопического анализа. Подобная примесь наблюдается не по всему объему пунктата, а лишь сверху. Примеси бывает бледно-розовой, мутно-розовой или серовато-розовой.

Кстанохромическая интенсивность пробы оценивается по поставленным лаборантом «плюсов» в ходе визуального оценивания:

    первая степень (слабая).

    вторая степень (умеренная).

    третья степень (сильная).

    четвертая степень (чрезмерная).

Кровяные фракции или сильная насыщенность пунктата позволяют предположить один из диагнозов: разрыв сосудов аневризмы и последующее внутричерепное кровоизлияние, геморрагический энцефалит или инсульт, ЧМТ средней и сильной степени, кровоизлияние в мозговую ткань.

    Цитология.

Состояние цереброспинальной жидкости здорового человека допускает незначительное содержание клеток, однако в пределах установленных значений.

Лейкоциты в одном кубическом мм:

    до 6 ед. (у взрослых);

    до 8-10 ед. (у детей);

    до 20 ед. (у младенцев и малышей до 10 месяца).

Плазматических клеток не должно быть. Наличие свидетельствует об инфекционных болезнях центральной нервной системы: рассеянном склерозе, энцефалите, менингите или восстановлении после хирургического вмешательства с раной, которая долго не заживала.

Моноциты наблюдаются в количестве до 2 на кубический мм. Если количество растет, то это повод заподозрить хроническую патологию ЦНС: ишемию, нейросифилис, туберкулез.

Нейтрофильный компонент присутствуют только при воспалительных процессах, измененные формы – при выздоровлении после воспаления.

Клетки-макрофаги зернистого типа могут находиться в СМЖ лишь тогда, когда мозговая ткань организма распадается, как при опухоли. Эпителиальные клетки попадают в пунктат только в случае развития опухоли ЦНС.

Норма, показатели ликвора у здорового человека

Помимо составляющих компонентов, прозрачности и цветовой характеристики, нормальный ликвор должен соответствовать и другим показателям: реакция среды, количество клеток, хлоридов, глюкозы, белка, максимальный цитоз, отсутствие антител и т.д.

Отклонение от приведенных показателей может служить, как идентификатор болезни – например, иммуноглобулины и антитела олигоклонального типа в образце могут указывать на наличие или риск развития рассеянного склероза.

    Белок в ликворе : люмбальный – 0,21-0,33 г/литр, вентрикулярный – 0,1-0,2 г/литр.

    Давление в диапазоне 100-200 мм водного ст. (иногда указывают величины 70-250 мм — в странах за пределами постсоветского пространства).

    Глюкоза : 2,70-3,90 ммоль на литр (некоторые источники указывают: две трети от общего количества глюкозы в плазме).

    Хлориды СМЖ: от 116 до 132 ммоль на литр.

    Оптимальными показателями реакции среды считаются значения в пределах 7,310 – 7,330 pH. Изменение кислотности крайне негативно сказывается на выполнении биологических функций, качестве СМЖ и скорости ее протекания по ликворовыводящим путям.

    Цитоз в ликворе : люмбальный – до трех ед. на мкл, вентрикулярный – до одного на мкл.

Чего быть в пунктате здорового человека НЕ должно?

    Антитела и иммуноглобулины.

    Опухолевые, эпителиальные, плазматические клетки.

    Фибриногены, фибриногеновая пленка.

Определяют также и плотность пробы. Норма:

    Общая плотность не должна превышать 1,008 грамм на литр.

    Люмбальный фрагмент – 1,006-1,009 г/л.

    Вентрикулярный фрагмент – 1,002-1,004 г/л.

    Субокципитальный фрагмент – 1,002-1,007 г/л.

Понижаться значение может при уремии, сахарном диабете или менингите, а повышаться – при гидроцефалическом синдроме (увеличении размеров головы вследствие скопления жидкости и ее затрудненного выведения).

Нарушение ликвора. Причины и симптомы

Среди основных болезненных состояний, связанных с СМЖ, выделяют ликворею, ликвородинамический дисбаланс, “водянку” мозга и повышенное внутричерепное давление. Их механизм развития различается, как и симптомокомплекс.

Ликворея

Является самым патогенетически простым заболеванием, ведь ее механизм понятен: нарушается целостность костей основания черепной коробки или мозговых оболочек, что провоцирует выделение спинномозговой субстанции.

В зависимости от симптомов и визуальных проявлений ликворею называют:

    Скрытой – ликвор истекает по носовым ходам, что не заметно визуально за счет аспирации или случайного заглатывания.

    Явной – прозрачная жидкость или с примесью сукровицы интенсивно выделяется из ушей, мест перелома, что заметно по протеканию бинтовой головной повязки.

Также выделяют:

    Первичную природу болезни – истечение проявляется сразу же после получения травмы, после операционного вмешательства.

    Вторичную, или ликворные свищи – истечение наблюдается на поздних сроках сильных осложнений инфекционных заболеваний.

Если первичная патология не лечится на протяжении длительного срока, а затем наслаивается воспаление (менингит или энцефалит), то это чревато развитием свища.

Распространенные причины истечения СМЖ:

    сильные ушибы с черепно-мозговой травмой;

    травмы и серьезные ранения позвоночника;

    осложненная гидроцефалия;

    грыжевые новообразования и опухоли в опасной близости или непосредственно в мозговой ткани;

    неаккуратность врачебных манипуляций – промывания или дренирования ЛОР-профиля;

    слабость швов твердой оболочки после проведения операций нейрохирургического профиля;

    спонтанная ликворея – очень редко.

    Ликвородинамические нарушения

    Ликвородинамика нарушается в случае затруднения или неправильной циркуляции спинномозговой жидкости. Течения болезни могут быть гипертензивными (связанными с повышенным давлением) или же гипотензивными (наоборот – с пониженным).

    Гипертензивная форма возникает при:

      чрезмерном выделении – из-за сильной возбудимости сосудистых сплетений, которые отвечают за продукцию ЦСЖ;

      недостаточной всасываемости, выведения.

    Ликвор продуцируется в больших количествах или же попросту не всасывается, что провоцирует такую симптоматику:

      выраженные головные боли, особенно интенсивны в утренние часы;

      тошнота, частые рвотные позывы, периодически — рвота;

      кружится голова;

      замедленное сердцебиение – брадикардия;

      иногда нистагм – частые непроизвольные движения глаз, «дрожание» зрачков;

      симптомы, характерные для менингита.

    Гипотензивная форма возникает реже, при гипофункции, или слабой активности сосудистых сплетений, следствие – сниженная продукция ликворной субстанции. Симптоматика:

      сильная головная боль в затылочной и теменной областях;

      неприятные ощущения, усилие боли при резких движений, чрезмерной физической активности;

      гипотензия.

    Нарушение оттока ликвора и резорбции

    Когда в организме происходит сбой, то может нарушаться отток цереброспинального вещества и его резорбция из головного мозга – за счет этого развиваются отклонения, которые по-разному проявляются у взрослых и у детей.

    Взрослый отреагирует на отклонение повышением внутричерепного давления за счет крепкой, «заросшей» черепной коробки. Кости черепа ребенка незрелые и еще не срослись, поэтому избыточное скопление спинномозговой субстанции провоцирует гидроцефалию (водянку ГМ) и другие неприятные проявления.

    Скопление ликвора в головном мозге – повышенное ВЧД у взрослых

    В черепной коробке находится не только мозговая ткань и великое множество нейронов – значительная часть объема занята именно СМЖ. Большая его доля находится в желудочках, а меньшая – омывает ГМ и движется между его паутинной и мягкой оболочками.

    Внутричерепное давление напрямую зависит от объема черепа и количества циркулирующей в нем жидкости. Повышается продукция вещества или снижается его резорбция – организм сразу же реагирует на это повышением ВЧД.

    Данный показатель отражает, на сколько давление внутри черепа превышает атмосферное – нормой является величина от 3 до 15 мм ртутного столбика. Незначительные колебания приводят к ухудшению самочувствия, а вот рост ВЧД до отметки в 30 мм рт. ст. уже грозит летальным исходом.

    Проявления повышенного ВЧД:

      постоянно клонит в сон, малая работоспособность;

      выраженные головные боли;

      ухудшение остроты зрения;

      забывчивость, рассеяность, низкая концентрация внимания;

      заметны «скачки» давления – гипертензия регулярно сменяется гипотензией;

      плохой аппетит, тошнота, рвота;

      эмоциональная нестабильность: перепады настроения, депрессивность, апатия, сильная раздражительность;

      позвоночные боли;

      озноб;

      повышение потливости;

      сбои дыхательной активности, одышка;

      кожа более чувствительна;

      мышечный парез.

    Наличие 2-3 симптомов не является причиной подозревать повышенное ВЧД, а вот практически полный комплекс – это весомая причина обратиться к специалисту.

    Ярчайший признак заболевания – опоясывающая головная боль, не выраженная в каком-либо отдельном участке. Кашель, чихание и резкие движения только провоцируют усиление болевых ощущений, которые не купируются даже анальгетиками.

    Второй важный признак повышенного ВЧД — проблемы со зрением. Больной страдает от двоения в глазах (диплопии), замечает ухудшение зрения в темноте и при ярком освещении, видит, как в тумане и страдает от приступов слепоты.

    Давление может повышаться и у здорового организма, однако сразу же приходит в норму – например, во время физических и эмоциональных нагрузках, стрессах, кашле или чихании.

    Скопление ликвора в головном мозге – детская водянка ГМ

    Маленькие дети не могут сообщить о своем самочувствии, поэтому родители должны уметь определить нарушение ликворного оттока по внешним признакам и поведению младенца. К ним относятся:

      заметная сосудистая сетка на коже лба, затылка;

      ночное беспокойство, плохой сон;

      частый плач;

      рвота;

      выпячивание родничка, его пульсация;

      судороги;

      увеличение размеров головы;

      неравномерный мышечный тонус – часть напряжена, а часть расслаблена.

    Самым серьезным признаком повышенного ВЧД у ребенка является гидроцефалия, которая встречается с частотой до одного случая на пару тысяч новорожденных. Малыши мужского пола болеют водянкой головного мозга чаще, а сам порок диагностируется врачами обычно в течение первых 3 месяцев жизни.

    Не стоит путать “мозговую водянку”, как самостоятельное заболевание, с диагнозом «гипертензивно-гидроцефальный синдром». Он отражает, что у новорожденного слегка повышено ВЧД, однако это не требует терапии, как и хирургического вмешательства, так как устраняется само.

    Детская форма болезни может быть врожденной или приобретенной в зависимости от причины развития, которых, как утверждают медицинские специалисты, может быть до 170. Врожденный недуг провоцируется:

      травмой ребенка во время родов;

      гипоксией во время родов (недостаточное поступление кислорода);

      генетическими сбоям;

      инфекционными заболеваниями, перенесенными плодом во время пребывания в утробе матери (цитомегалопатия, острые респираторные вирусные инфекции, заражения микоплазмой и токсоплазмой, сифилис, краснуха, паротит и герпесвирус).

    Генетические отклонения, вызывающие врожденную форму:

      недоразвитые ликворовыводящие протоки;

      синдром Киари – череп ребенка по объему больше,чем его мозг;

      суженный ликворопровод;

      другие хромосомные патологии.

    Приобретенная форма возникает вследствие токсических отравлений, развития опухолей, мозговых кровоизлияний, перенесенных инфекционных заболеваниях вне материнской утробы – к ним относятся отит, менингит и энцефалит.

    Говоря о гидроцефалии у новорожденных, стоит учесть, что в норме окружность головы малышей увеличивается достаточно быстро (по полтора сантиметра в месяц), однако если рост превышает показатели, то это весомый повод обследовать ребенка..

    Череп грудничка мягкий, еще не окостеневший, а избыток ликвора замедляет зарастание родничка, «раздвигает» кости и препятствует нормальному развитию черепной коробки – из-за этого голова увеличивается непропорционально. Скапливаясь в субарахноидальном пространстве , которое разделяет мозговые оболочки, ликвор сдавливает некоторые отделы мозга. Несмотря на податливость детских черепных костей, это проявление болезни опасно и требует немедленного лечения. Увеличение размера головы – не единственный признак затрудненного ликворного оттока у детей. Характерным является:

      специфический звук “разбитого горшка”, слышимый при легком постукивании по черепу;

      сложности с поднятием и держанием головы в одном положении;

      дрожание подбородка, рук.

    Важно обращать внимание на глаза малыша, ведь некоторые признаки являются показательными:

      непроизвольные, хаотичные движения глаз;

      периодическое закатывание глаз;

      глаза «косят»;

      синдром «заходящего солнца» — при моргании заметна тонкая белая полоса между зрачком и верхним веком.

    Гидроцефалия до 2 лет проявляется этим симптомокомплексом, а позже – комбинируется рвотой, тошнотой, проблемами с координацией, раздражительностью, диплопией или даже слепотой.

    Иногда гидроцефалический синдром развивается и у взрослых, как следствие перенесенных инфекций, однако это редкое явление.

    Как улучшить отток ликвора

    О патологии ликворного оттока у малыша обычно узнают от невропатолога, обследование у которого проходит в первый месяц после рождения. Первичное обследование и выявление признаков требует медицинской коррекции, так как данная болезнь будет препятствовать нормальному развитию ребенка.

    Если состояние маленького пациента сложное, то специалисты с помощью хирургического вмешательства создают «обходные пути» для СМЖ и устраняют плохой отток искусственным образом. В случае, если ситуация не угрожает жизни грудничка, то лечение может проходить и в домашних условиях с медикаментозной терапией. Для того, чтобы назначить оптимальные медикаменты ребенку, необходимо понимать, что может мешать оттоку ликвора при гидроцефалии . Причина, происхождение и осложнения – все факторы сыграют роль при подборе лечения.

    Фармакологическая коррекция нарушений оттока у детей включает:

      препараты, улучшающие и стимулирующие кровоток (Актовегин, Пантогам, Циннаризин);

      лекарства, способствующие выведению излишков жидкости (Триампур или Диакарб);

      препараты-нейропротекторы (Цераксон).

    Лечение нарушений спинномозгового ликвора

    Детские заболевания ликвородинамики чаще всего корректируются фармакотерапией, а вот взрослым требуется назначить физиологические процедуры:

      Курсовый электрофорез с эуфиллином (десять посещений) – лекарственная «подпитка» позволит активизировать доставку кислорода в мозговую ткань, страдающую от гипоксии при повышенном ВЧД. Состояние сосудов приходит в норму, что обеспечит нормальную резорбцию.

      15 сеансов массажа воротниковой зоны – процедура проста, поэтому со временем больной может и сам проводить подобную манипуляцию. С ее помощью снижается гипертонус мышц, снимается спазм и налаживает отток.

      Магнитное воздействие на воротниковую зону – снижение отечности и сосудистого спазма, улучшение иннервации.

      Лечебное плавание или поддерживающая физ. зарядка.

    Значение спинномозговой жидкости в остеопатии

    Развивающимся направлением в медицине является краниосакральная остеопатия. По состоянию и составу спинномозговой жидкости можно определить многие недуги в организме. В ликвор попадают медиаторы, регулирующие:

      дыхательную активность;

      режимы сна и бодрствования;

      стабильность эндокринных систем;

      работу сердечно-сосудистого комплекса.

    Для нормального человеческого функционирования ликвор должен беспрестанно циркулировать по своему «пути» и сохранять компонентное постоянство. Малейшее нарушение целостности черепных швов ведет к защемлению участка мозговой ткани, затем влияние распространяется на нижележащие структуры.

    Краниосакральная остеопатия желательна после серьезных ушибов, дорожных аварий, черепно-мозговых и родовых травм. Консультация у специалиста позволит выявить недуг на ранней стадии, а для младенцев это особенно важно. Пластические нарушения краниосакральной системы новорожденного прямо влияют на последующее развитие когнитивных функций, ЦНС и опорно-двигательного аппарата.

    Взрослые жалуются на нистагм, нарушения зрения и дыхания, снижение способности запоминать информацию, концентрироваться на предмете мысли, сбои в менструальном цикле, резкие изменения веса, психоэмоциональную нестабильность, интенсивное слезо-, слюно- и потоотделение. Обычно подобные жалобы приписываются другим болезням, а вот опытный врач-остеопат сможет провести доскональный анализ состояния больного, его черепа и позвоночника, после чего выяснит и устранит первоначальную причину.