Ренин ангиотензин альдостероновая система. Ожирение и артериальная гипертония

Ренин

Ренин - протеолитический фермент, продуцируемый юкстагломерулярными клетками, расположенными вдоль афферентных (приносящих) артериол почечного тельца. Секрецию ренина стимулирует падение давления в приносящих артериолах клубочка, вызванное уменьшением АД и снижением концентрации Na + . Секрецию ренина также способствует снижение импульсации от барорецепторов предсердий и артерий в результате уменьшения АД. Секрецию ренина ингибирует Ангиотензин II, высокое АД.

В крови ренин действует на ангиотензиноген.

Ангиотензиноген - α 2 -глобулин, из 400 АК. Образование ангиотензиногена происходит в печени и стимулируется глюкокортикоидами и эстрогенами. Ренин гидролизует пептидную связь в молекуле ангиотензиногена, отщепляя от него N-концевой декапептид -ангиотензин I , не имеющий биологической активности.

Под действием антиотензин-превращающего фермента (АПФ) (карбоксидипептидилпептидазы) эдотелиальных клеток, лёгких и плазмы крови, с С-конца ангиотензина I удаляются 2 АК и образуется ангиотензин II (октапептид).

Ангиотензин II

Ангиотензин II функционирует через инозитолтрифосфатную систему клеток клубочковой зоны коры надпочечников и ГМК. Ангиотензин II стимулирует синтез и секрецию альдостерона клетками клубочковой зоны коры надпочечников. Высокие концентрации ангиотензина II вызывают сильное сужение сосудов периферических артерий и повышают АД. Кроме этого, ангиотензин II стимулирует центр жажды в гипоталамусе и ингибирует секрецию ренина в почках.

Ангиотензин II под действием аминопептидаз гидролизуется в ангиотензин III (гептапептид, с активностью ангиотензина II, но имеющий в 4 раза более низкую концентрацию), который затем гидролизуется ангиотензиназами (протеазы) до АК.

Альдостерон

Альдостерон - активный минералокортикостероид, синтезирующийся клетками клу-бочковой зоны коры надпочечников.

Синтез и секрецию альдостерона стимулируют ангиотензин II , низкая концентрация Na + и высокая концентрацией К + в плазме крови, АКТГ, простагландины. Секрецию альдостерона тормозит низкая концентрация К + .

Рецепторы альдостерона локализованы как в ядре, так и в цитозоле клетки. Альдостерон индуцирует синтез: а) белков-транспортёров Na + , переносящих Na + из просвета канальца в эпителиальную клетку почечного канальца; б) Na + ,К + -АТФ-азы в) белков-транспортёров К + , переносящих К + из клеток почечного канальца в первичную мочу; г) митохондриальных ферментов ЦТК, в частности цитратсинтазы, стимулирующих образование молекул АТФ, необходимых для активного транспорта ионов.

В результате альдостерон стимулирует реабсорбцию Na + в почках, что вызывает задержку NaCl в организме и повышает осмотическое давление.

Альдостерон стимулирует секрецию К + , NH 4 + в почках, потовых железах, слизистой оболочке кишечника и слюнных железах.

3. Схема регуляции водно-солевого обмена Роль системы раас в развитии гипертонической болезни

Гиперпродукция гормонов РААС вызывает повышение объема циркулирующей жидкости, осмотического и артериального давления, и ведет к развитию гипертонической болезни.

Повышение ренина возникает, например, при атеросклерозе почечных артерий, который возникает у пожилых.

Гиперсекреция альдостерона – гиперальдостеронизм , возникает в результате нескольких причин.

Причиной первичного гиперальдостеронизма (синдром Конна ) примерно у 80% больных является аденома надпочечников, в остальных случаях - диффузная гипертрофия клеток клубочковой зоны, вырабатывающих альдостерон.

При первичном гиперальдостеронизме избыток альдостерона усиливает реабсорбцию Na + в почечных канальцах, что служит стимулом к секреции АДГ и задержке воды почками. Кроме того, усиливается выведение ионов К + ,Mg 2+ и Н + .

В результате развиваются: 1). гипернатриемия, вызывающая гипертонию, гиперволемию и отёки; 2). гипокалиемия, ведущая к мышечной слабости; 3). дефицит магния и 4). лёгкий метаболический алкалоз.

Вторичный гиперальдостеронизм встречается гораздо чаще, чем первичный. Он может быть связан с сердечной недостаточностью, хроническими заболеваниями почек, а также с опухолями, секретирующие ренин. У больных наблюдают повышенный уровень ренина, ангиотензина II и альдостерона. Клинические симптомы менее выражены, чем при первичном альдостеронизе.

КАЛЬЦИЙ, МАГНИЙ, ФОСФОРНЫЙ ОБМЕН

Функции кальция в организме:

    Внутриклеточный посредник ряда гормонов (инозитолтрифосфатная система);

    Участвует в генерации потенциалов действия в нервах и мышцах;

    Участвует в свертывании крови;

    Запускает мышечное сокращение, фагоцитоз, секрецию гормонов, нейромедиаторов и т.д.;

    Участвует в митозе, апоптозе и некробиозе;

    Увеличивает проницаемость мембраны клеток для ионов калия, влияет на натриевую проводимость клеток, на работу ионных насосов;

    Кофермент некоторых ферментов;

Функции магния в организме:

    Является коферментом многих ферментов (транскетолаз (ПФШ), глюкозо-6ф дегидрогеназы, 6-фосфоглюконат дегидрогеназы, глюконолактон гидролазы, аденилатциклазы и т.д.);

    Неорганический компонент костей и зубов.

Функции фосфата в организме:

    Неорганический компонент костей и зубов (гидроксиаппатит);

    Входит в состав липидов (фосфолипиды, сфинголипиды);

    Входит в состав нуклеотидов (ДНК, РНК, АТФ, ГТФ, ФМН, НАД, НАДФ и т.д.);

    Обеспечивает энергетический обмен т.к. образует макроэргические связи (АТФ, креатинфосфат);

    Входит в состав белков (фосфопротеины);

    Входит в состав углеводов (глюкозо-6ф, фруктозо-6ф и т.д.);

    Регулирует активность ферментов (реакции фосфорилирования / дефосфорилирования ферментов, входит в состав инозитолтрифосфата – компонента инозитолтрифосфатной системы);

    Участвует в катаболизме веществ (реакция фосфоролиза);

    Регулирует КОС т.к. образует фосфатный буфер. Нейтрализует и выводит протоны с мочой.

Распределение кальция, магния и фосфатов в организме

У взрослого человека содержится в среднем 1000г кальция:

    Кости и зубы содержат 99% кальция. В костях 99% кальция находится в виде малорастворимого гидроксиапатита [Са 10 (РО 4) 6 (ОН) 2 Н 2 О], а 1% - в виде растворимых фосфатов;

    Внеклеточная жидкость 1%. Кальций плазмы крови представлен в виде: а). свободных ионов Са 2+ (около 50%); б). ионов Са 2+ соединённых с белками, главным образом, с альбумином (45%); в) недиссоциирующих комплексов кальция с цитратом, сульфатом, фосфатом и карбонатом (5%). В плазме крови концентрация общего кальция составляет 2, 2-2,75 ммоль/л, а ионизированного - 1,0-1,15 ммоль/л;

    Внутриклеточная жидкость содержит кальция в 10000-100000 раз меньше чем внеклеточной жидкости.

Во взрослом организме содержится в около 1кг фосфора:

    Кости и зубы содержат 85% фосфора;

    Внеклеточная жидкость – 1% фосфора. В сыворотке крови концентрация неорганического фосфора – 0,81-1,55 ммоль/л, фосфора фосфолипидов 1,5-2г/л;

    Внутриклеточная жидкость – 14% фосфора.

Концентрация магния в плазме крови 0,7-1,2 ммоль/л.

Обмен кальция, магния и фосфатов в организме

С пищей в сутки должно поступать кальция - 0,7-0,8г, магния - 0,22-0,26г, фосфора – 0,7-0,8г. Кальций всасывается плохо на 30-50%, фосфор хорошо – на 90%.

Помимо ЖКТ, кальций, магний и фосфор поступают в плазму крови из костной ткани, в процессе ее резорбции. Обмен между плазмой крови и костной тканью по кальцию составляет 0,25-0,5г/сут, по фосфору – 0,15-0,3г/сут.

Выводится кальций, магний и фосфор из организма через почки с мочой, через ЖКТ с калом и через кожу с потом.

Регуляция обмена

Основными регуляторами обмена кальция, магния и фосфора являются паратгормон, кальцитриол и кальцитонин.

Паратгормон

Паратгормон (ПТГ) - полипептид, из 84 АК (около 9,5 кД), синтезируется в паращитовидных железах.

Секрецию паратгормона стимулирует низкая концентрация Са 2+ ,Mg 2+ и высокая концентрация фосфатов, ингибирует витамин Д 3 .

Скорость распада гормона уменьшается при низкой концентрации Са 2+ и увеличивается, если концентрация Са 2+ высока.

Паратгормон действует на кости и почки . Он стимулирует секрецию остеобластамиинсулиноподобного фактора роста 1 и цитокинов , которые повышают метаболическую активностьостеокластов . В остеокластах ускоряется образованиещелочной фосфатазы и коллагеназы , которые вызывают распад костного матрикса, в результате чего происходит мобилизация Са 2+ и фосфатов из кости во внеклеточную жидкость.

В почках паратгормон стимулирует реабсорбцию Са 2+ ,Mg 2+ в дистальных извитых канальцах и уменьшает реабсорбцию фосфатов.

Паратгормон индуцирует синтез кальцитриола (1,25(OH) 2 D 3).

В результате паратгормон в плазме крови повышает концентрацию Са 2+ иMg 2+ , и снижает концентрацию фосфатов.

Гиперпаратиреоз

При первичном гиперпаратиреозе (1:1000) нарушается механизм подавления секреции паратгормона в ответ на гиперкальциемию. Причинами могут быть опухоль (80%), диффузная гиперплазия или рак (менее 2%) паращитовидной железы.

Гиперпаратиреоз вызывает:

    разрушение костей , при мобилизации из них кальция и фосфатов. Увеличивается риск переломов позвоночника, бедренных костей и костей предплечья;

    гиперкальциемию , при усилении реабсорбции кальция в почках. Гиперкальциемия приводить к снижению нервно-мышечной возбудимости и мышечной гипотонии. У больных появляются общая и мышечная слабость, быстрая утомляемость и боли в отдельных группах мышц;

    образования в почках камней при увеличение концентрации фосфата и Са 2+ в почечных канальцах;

    гиперфосфатурию и гипофосфатемию , при снижении реабсорбции фосфатов в почках;

Вторичный гиперпаратиреоз возникает при хронической почечной недостаточности и дефиците витамина D 3 .

При почечной недостаточности угнетается образование кальцитриола, что нарушает всасывание кальция в кишечнике и приводит к гипокальциемии . Гиперпаратиреоз возникает в ответ на гипокальциемию, но паратгормон не способен нормализовать уровень кальция в плазме крови. Иногда возникает гиперфостатемия. В следствие повышения мобилизации кальция из костной ткани развивается остеопороз.

Гипопаратиреоз

Гипопаратиреоз обусловлен недостаточностью паращитовидных желёз и сопровождается гипокальциемией. Гипокальциемия вызывает повышение нервно-мышечной проводимости, приступы тонических судорог, судороги дыхательных мышц и диафрагмы, ларингоспазм.

Кальцитриол

Кальцитриол синтезируется из холестерола.

    В коже под влиянием УФ-излучения из 7-дегидрохолестерола образуется большая часть холекальциферола (витамина Д 3). Небольшое количество витамина Д 3 поступает с пищей. Холекальциферол связывается со специфическим витамин Д-связывающим белком (транскальциферином), поступает в кровь и переносится в печень.

    В печени 25-гидроксилаза гидроксилирует холекальциферол в кальцидиол (25-гидроксихолекальциферол, 25(OH)Д 3). D-связывающий белок транспортирует кальцидиол в почки.

    В почках митохондриальная 1α-гидроксилаза гидроксилирует кальцидиол в кальцитриол (1,25(OH) 2 Д 3), активную форму витамина Д 3 . Индуцирует 1α-гидроксилазу паратгормон.

Синтез кальцитриола стимулирует паратгормон, низкая концентрация фосфатов и Са 2+ (через паратгормон) в крови.

Синтез кальцитриола ингибирует гиперкальциемия, она активирует 24α-гидроксилазу , которая превращает кальцидиол в неактивный метаболит 24,25(OH) 2 Д 3 , при этом соответственно активный кальцитриол не образуется.

Кальцитриол воздействует на тонкий кишечник, почки и кости.

Кальцитриол:

    в клетках кишечника индуцирует синтез Са 2+ -переносящих белков, которые обеспечивают всасывание Са 2+ , Mg 2+ и фосфатов;

    в дистальных канальцах почек стимулирует реабсорбцию Са 2+ , Mg 2+ и фосфатов;

    при низком уровне Са 2+ увеличивает количество и активность остеокластов, что стимулирует остеолиз;

    при низком уровне паратгормона, стимулирует остеогенез.

В результате кальцитриол повышает в плазме крови концентрацию Са 2+ , Mg 2+ и фосфатов.

При дефиците кальцитриола нарушается образование аморфного фосфата кальция и кристаллов гидроксиапатитов в костной ткани, что приводит к развитию рахита и остеомаляции.

Рахит - заболевание детского возраста, связанное недостаточной минерализацией костной ткани.

Причины рахита : недостаток витамина Д 3 , кальция и фосфора в пищевом рационе, нарушение всасывания витамина Д 3 в тонком кишечнике, снижением синтеза холекальциферола из-за дефицита солнечного света, дефект 1а-гидроксилазы, дефект рецепторов кальцитриола в клетках-мишенях. Снижение концентрации в плазме крови Са 2+ стимулирует секрецию паратгормона, который через остеолиз вызывает разрушение костной ткани.

При рахите поражаются кости черепа; грудная клетка вместе с грудиной выступает вперёд; деформируются трубчатые кости и суставы рук и ног; увеличивается и выпячивается живот; задерживается моторное развитие. Основные способы предупреждения рахита - правильное питание и достаточная инсоляция.

Кальцитонин

Кальцитонин - полипептид, состоит из 32 АК с одной дисульфидной связью, секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желёз.

Секрецию кальцитонина стимулирует высокая концентрация Са 2+ и глюкагона, подавляет низкая концентрация Са 2+ .

Кальцитонин:

    подавляет остеолиз (снижая активность остеокластов) и ингибирует высвобождение Са 2+ из кости;

    в канальцах почек тормозит реабсорбцию Са 2+ , Mg 2+ и фосфатов;

    тормозит пищеварение в ЖКТ,

Изменения уровня кальция, магния и фосфатов при различных патологиях

Снижение концентрации Са 2+

    беременности;

    алиментарной дистрофии;

    рахите у детей;

    остром панкреатите;

    закупорке желчевыводящих путей, стеаторее;

    почечной недостаточности;

    вливание цитратной крови;

Повышение концентрации Са 2+ в плазме крови наблюдается при:

    переломы костей;

    полиартриты;

    множественные миеломы;

    метастазы злокачественных опухолей в кости;

    передозировка витамина Д и Са 2+ ;

    механическая желтуха;

Снижение концентрации фосфатов в плазме крови наблюдается при:

  1. гиперфункции паращитовидных желез;

    остеомаляции;

    почечный ацидоз

Повышение концентрации фосфатов в плазме крови наблюдается при:

    гипофункции паращитовидных желез;

    передозировка витамина Д;

    почечной недостаточности;

    диабетическом кетоацидозе;

    миеломной болезни;

    остеолизе.

Концентрация магния часто пропорциональна концентрации калия и зависит от общих причин.

Повышение концентрации Mg 2+ в плазме крови наблюдается при:

    распаде тканей;

    инфекциях;

  1. диабетическом ацидозе;

    тиреотоксикозе;

    хроническом алкоголизме.

Роль микроэлементов: Mg 2+ , Mn 2+ , Co , Cu , Fe 2+ , Fe 3+ , Ni , Mo , Se , J . Значение церулоплазмина, болезнь Коновалова-Вильсона.

Марганец – кофактор аминоацил-тРНК синтетаз.

Биологическая роль Na + , Cl - , K + , HCO 3 - - основных электролитов, значение в регуляции КОС. Обмен и биологическая роль. Анионная разность и ее коррекция.

Тяжелые металлы (свинец, ртуть, медь, хром и др.), их токсическое действие.

Повышение содержание хлоридов в сыворотке крови : обезвоживание, острая почечная недостаточность, метаболический ацидоз после диареи и потери бикарбонатов, респираторный алкалоз, травма головы, гипофункция надпочечников, при длительном приеме кортикостероидов, тиазидный диуретиков, гиперальдостеронизм, болезнь Кушенга.

Снижение содержания хлоридов в сыворотке крови : алкалоз гипохлоремический (после рвоты), ацидоз респираторный, избыточное потоотделение, нефрит с потерей солей (нарушение реабсорбции), травма головы, состояние с увеличением объема внеклеточной жибкости, калит язвенный, болезнь Аддисона (гипоальдостеронизм).

Повышенное выделение хлоридов с мочой : гипоальдостеронизм (болезнь Аддисона), нефрит с потерей солей, повышенный прием соли, лечение диуретиками.

Снижение выведения хлоридов с мочой : Потеря хлоридов при рвоте, диареи, болезнь Кушинга, терминальная фаза почечной недостаточности, ретенция соли при образовании отеков.

Выделение кальция с мочой в норме 2,5-7,5 ммоль/сут.

Повышение содержание кальция в сыворотке крови : гиперпаратиреоз, метастазы опухолей в костную ткань, миеломная болезнь, сниженное выделение кальцитонина, передозировка витамина Д, тиреотоксикоз.

Снижение содержания кальция в сыворотке крови : гипопаратиреоз, увеличение выделения кальцитонина, гиповитаминоз Д, нарушение реабсорбции в почках, массивная гемотрансфузия, гипоальбунемия.

Повышенное выделение кальция с мочой : длительное воздействие солнечных лучей (гипервитаминоз Д), гиперпаратиреоз, метастазы опухолей в костную ткань, нарушение реабсорбции в почках, тиреотоксикоз, остеопороз, лечение глюкокортикоидами.

Снижение выведения кальция с мочой : гипопаратиреоз, рахит, острый нефрит (нарушение фильтрации в почках), гипотериоз.

Повышение содержание железа в сыворотке крови : апластическая и гемолитическая анемии, гемохроматоз, острый гепатит и стеатоз, цирроз печени, талассемия, повторные трансфузии.

Снижение содержания железа в сыворотке крови : железодефицитная анемия, острые и хронические инфекции, опухоли, заболевания почек, кровопотеря, беременность, нарушение всасывания железа в кишечнике.

И превращается в проренин путём отщепления 23 аминокислот . В эндоплазматическом ретикулуме проренин подвергается гликозилированию и приобретает 3-D структуру, которая характерна для аспартатных протеаз . Готовая форма проренина состоит из последовательности включающей 43 остатка присоединённых к N-концу ренина, содержащего 339-341 остаток . Предполагается, что дополнительная последовательность проренина (prosegment) связана с ренином для предотвращения взаимодействия с ангиотензиногеном. Большая часть проренина свободно выбрасывается в системный кровоток путём экзоцитоза , но некоторая доля превращается в ренин путём действия эндопептидаз в секреторных гранулах юкстагломерулярных клеток. Ренин , образуемый в секреторных гранулах в дальнейшем выделяется в кровоток, но этот процесс жёстко контролируется давлением , ангиотензином 2, NaCl, через внутриклеточные концентрации ионов кальция. Поэтому у здоровых людей объём циркулирующего проренина в десять раз выше концентрации активного ренина в плазме. Однако, все же остаётся не понятным, почему концентрация неактивного предшественника настолько высока.

Контроль секреции ренина

Активная секреция ренина регулируется четырьмя независимыми факторами:

  1. Почечным барорецепторным механизмом в афферентной артериоле, который улавливает изменение почечного перфузионного давления.
  2. Изменениями уровня NaCl в дистальном отделе нефрона. Этот поток измеряется как изменение концентрации Cl - клетками плотного пятна дистального извитого канальца нефрона в области, прилегающей к почечному тельцу.
  3. Стимуляцией симпатическими нервами через бета-1 адренергические рецепторы.
  4. Механизмом отрицательной обратной связи, реализованным через прямое действие ангиотензина 2 на юкстагломерулярные клетки.

Секрецию ренина активирует снижение перфузионного давления или уровня NaCl и повышение симпатической активности. Ренин также синтезируется и в других тканях, включая мозг, надпочечник, яичники, жировая ткань, сердце и сосудах.

Контроль секреции ренина - определяющий фактор активности РААС.

Механизм действия ренин-ангиотензиновой системы

Ренин регулирует начальный, ограничивающий скорость, этап РААС путём отщепления N-концевого сегмента ангиотензиногена для формирования биологически инертного декапептида ангиотензина 1 или Ang-(1-10). Первичный источник ангиотензиногена - печень . Долговременный подъём уровня ангиотензиногена в крови , который происходит во время беременности , при синдроме Иценко-Кушинга или при лечении глюкокортикоидами , может вызвать гипертензию , хотя и существуют данные о том, что хроническое повышение концентрации ангиотензина в плазме частично компенсируется снижением секреции ренина . Неактивный декапептид Ang 1 гидролизуется в клетках эндотелия лёгочных капилляров ангиотензинпревращающим ферментом (АПФ) , который отщепляет С-концевой дипептид и, таким образом, формируется октапептид Ang 2 , биологически активный, мощный вазоконстриктор. АПФ представляет собой экзопептидазу и секретируется главным образом лёгочным и почечным эндотелием, нейроэпителиальными клетками . Ферментативная активность АПФ заключается в повышении вазоконстрикции и снижении вазодилятации.

Новые данные о компонентах ренин-ангиотензиновой системы

Хотя Ang2 наиболее биологически активный продукт РААС, существуют данные, что другие метаболиты агиотензинов 1 и 2 могу также могут иметь значительную активность. Ангиотензин 3 и 4 (Ang 3 & Ang 4) формируются путём отщепления аминокислот с N-конца от Ангиотензина 2 вследствие действия аминопептидаз А и N. Ang 3 и 4 наиболее часто вырабатываются в тканях с высоким содержанием этих ферментов , например, в мозге и почках. Ang 3 , гептапептид образующий в результате отщепления аминокислоты с N-конца, наиболее часто он встречается в центральной нервной системе, где Ang III играет важную роль в поддержании кров давления. Ang IV гексапептид является результатом дальнейшего ферментативного расщепления AngIII. Предполагается, что Ang 2 и 4 работают кооперативно. В качестве примера можно привести повышение кровяного давления в мозгу , вызываемое действием этих ангиотензинов на AT1-рецептор . Причём этот гемодинамический эффект Ang 4 требует наличия как Ang2 так и самого AT1- рецептора. Пептиды , получаемые отщеплением аминокислот с С-конца, могут также иметь биологическую активность. Например, Ang-(1-7), гептапептидный фрагмент ангиотензина 2, может образовываться как из Ang2 так и из Ang1 действием ряда эндопептидаз или действием карбоксипептидаз (например, гомологом АПФ, названным АПФ2) конкретно на Ang2. В отличие от АПФ, АПФ2 не может участвовать в реакции превращения Ang1 в Ang2 и его активность не подавляется ингибиторами ACE (ACEIs). Ang-(1-7) реализующий свои функции через определённые рецепторы, впервые был описан как вазодилататор и как натуральный ингибитор ACEI. Ему также приписываются и кардиопротекторные свойства. АПФ2 может также отщеплять одну аминокислоту с С-конца, результатом такого действия является Ang-(1-9), пептид с неизвестными функциями.

Рецепторы ангиотензина II

Описаны как минимум 4 подтипа рецепторов к ангиотензину .

  1. Первый тип AT1-R участвует в реализации наибольшего числа установленных физиологических и патофизиологических функций ангиотензина 2. Действие на сердечно-сосудистую систему (вазоконстрикция , повышение давления крови, повышение сократимости сердца , сосудистая и сердечная гипертония), действие на почки (реабсорбция Na+, ингибирование выделения ренина), симпатическую нервную систему , надпочечника (стимуляция синтеза альдостерона). AT1-R рецетор также является посредником во влиянии ангиотензина на клеточный рост , пролиферацию, воспалительные реакции, и оксидативный стресс . Этот рецептор связан с G-белком и содержит семь встроенных в мембрану последовательностей. AT1-R широко представлен во многих типах клеток, являющихся мишенью Ang 2.
  2. Второй тип AT2-R широко представлен в период эмбрионального развития мозга , почек затем же в период постнатального развития количество этого рецептора падает. Имеются данные, что, несмотря на низкий уровень экспрессии во взрослом организме, AT2 рецептор может выступать в качестве посредника в процессе вазодилятации и также оказывать антипролиферативный и антиапоптотичекие эффекты в гладких мышцах сосудов и угнетать рост кардиомиоцитов . В почках, как предполагается, активация AT2 влияет на реабсорбцию в проксимальных извитых канальцах и стимулировать реакции превращения простагландина E2 в простагландин F2α.2,7. Однако, важность некоторых из этих At2 связанных действий остаётся неизученной.
  3. Функции третьего типа (AT3) рецепторов не до конца изучены.
  4. Четвёртый тип рецепторов (AT4) участвует в выделении ингибитора активатора плазминогена (под действием ангиотензина 2, а также 3 и 4). Предполагается, что эффекты характерные для Ang 1-7, включая вазодилятацию, натрийурез, снижение пролиферации, и защита сердца, реализуются через уникальные рецепторы, которые не связываются с Ang 2, такими как MAS рецепторы.

Также нужно отметить, что последние данные указывают на существование высокоаффинных поверхностных рецепторов, которые связывают как ренин, так и проренин. Они находятся в тканях мозга, сердца, плаценты и почек (в поэндотелиальной гладкой мускулатуре и мезангие). Эффекты таких рецепторов направлены на локальное увеличение выработки Ang2 и запуска внеклеточных киназ, таких как, MAP -киназ, к которым относится ERK1 и ERK2. Эти данные пролили свет на Ang2-независимые механизмы клеточного роста, активируемые ренином и проренином.

Влияние на прочие секреции

Как отмечалось ранее Ang2, через AT1 рецепторы стимулирует выработку альдостерона клубочковой зоной надпочечника. Альдостерон наиболее важный регулятор K+- Na+ баланса и таким образом играет важную роль в контроле объёма жидкостей. Он увеличивает реабсорцию натрия и воды в дистальных извитых канальцах и собирательных трубочках (а также в толстой кишке и слюнных и потовых железах) и таким образом вызывает экскрецию ионов калия и водорода. Ангиотензин 2 вместе с внеклеточным уровнем ионов калия - наиболее значимые регуляторы альдостерона, но синтез Ang2 также может быть вызван АКТГ, норадреналином, эндотелином, серотонином, а ингибирован АНП и NO. Также важно отметить, что Ang 2 важный фактор трофики клубочковой зоны надпочечников, которая без его наличия может атрофироваться.

Альдостерон у человека является основным представителем минералокортикоидных гормонов, производных холестерола.

Синтез

Осуществляется в клубочковой зоне коры надпочечников. Образованный из холестерола прогестерон на пути к альдостерону подвергается последовательному окислению 21-гидроксилазой, 11-гидроксилазой и 18-гидроксилазой . В конечном итоге образуется альдостерон.

Схема синтеза стероидных гормонов (полная схема)

Регуляция синтеза и секреции

Активируют :

  • ангиотензин II , выделяемый при активации ренин-ангиотензиновой системы,
  • повышение концентрации ионов калия в крови (связано с деполяризацией мембран, открытием кальциевых каналов и активацией аденилатциклазы).

Активация ренин-ангиотензиновой системы

  1. Для активации этой системы существует два пусковых момента:
  • снижение давления в приносящих артериолах почек, которое определяется барорецепторами клеток юкстагломерулярного аппарата. Причиной этого может быть любое нарушение почечного кровотока – атеросклероз почечных артерий, повышенная вязкость крови, обезвоживание, кровопотери и т.п.
  • снижение концентрации ионов Na + в первичной моче в дистальных канальцах почек, которое определяется осморецепторами клеток юкстагломерулярного аппарата. Возникает в результате бессолевой диеты, при длительном использовании диуретиков.

Постоянная и независимая от почечного кровотока секреция ренина (базовая) поддерживается симпатической нервной системой.

  1. При выполнении одного или обоих пунктов клетки юкстагломерулярного аппарата активируются и из них в плазму крови секретируется фермент ренин .
  2. Для ренина в плазме имеется субстрат – белок α2-глобулиновой фракции ангиотензиноген . В результате протеолиза от белка отщепляется декапептид под названием ангиотензин I . Далее ангиотензин I при участии ангиотензин-превращающего фермента (АПФ) превращается в ангиотензин II .
  3. Главными мишенями ангиотензина II служат гладкие миоциты кровеносных сосудов и клубочковая зона коры надпочечников:
  • стимуляция кровеносных сосудов вызывает их спазм и восстановление артериального давления .
  • из надпочечников после стимуляции секретируется альдостерон , действующий на дистальные канальцы почек.

При воздействии альдостерона на канальцы почек увеличивается реабсорбция ионов Na + , вслед за натрием движется вода . В результате давление в кровеносной системе восстанавливается и концентрация ионов натрия увеличивается в плазме крови и, значит, в первичной моче, что снижает активность РААС.

Активация ренин-ангиотензин-альдостероновой системы

Механизм действия

Цитозольный.

Мишени и эффекты

Воздействует на слюнные железы, на дистальные канальцы и собирательные трубочки почек. В почках усиливает реабсорбцию ионов натрия и потерю ионов калия посредством следующих эффектов:

  • увеличивает количество Na + ,K + -АТФазы на базальной мембране эпителиальных клеток,
  • стимулирует синтез митохондриальных белков и увеличение количества нарабатываемой в клетке энергии для работы Na + ,K + -АТФазы,
  • стимулирует образование Na-каналов на апикальной мембране клеток почечного эпителия.

Патология

Гиперфункция

Синдром Конна (первичный альдостеронизм) – возникает при аденомах клубочковой зоны. Характеризуется триадой признаков: гипертензия, гипернатриемия, алкалоз.

Вторичный гиперальдостеронизм – гиперплазия и гиперфункция юкстагломерулярных клеток и избыточная секреция ренина и ангиотензина II. Отмечается повышение артериального давления и появление отеков.

Ренин-ангиотензин-альдостероновая система (РААС) выполняет важное гуморальное влияние на сердечно-сосудистую систему и участвует в регуляции артериального давления. Центральным звеном РААС является ангиотензин II (АТ II) (схема 1), который обладает мощным прямым вазоконстрикторным действием преимущественно на артерии и опосредованным действием на ЦНС, высвобождением катехоламинов из надпочечников и вызывает увеличение ОПСС, стимулирует секрецию альдостерона и приводит к задержке жидкости и повышению (ОЦК), стимулирует выброс катехоламинов (норадренолина) и других нейрогормонов из симпатических окончаний. Влияние АТ II на уровень АД осуществляется за счет действия на тонус сосудов, а также посредством структурной перестройки и ремоделирования сердца и сосудов. В частности, ATII является также фактором роста (или модулятором роста) для кардиомиоцитов и гладкомышечных клеток сосудов.

Схема 1. Строение ренин-ангиотензин-альдостероновой системы

Функции других форм ангиотензина. Ангиотензин I малозначим в системе РААС, так как быстро превращается в АТП, кроме того, его активность в 100 раз меньше активности АТП. Ангиотензин III действует подобно АТП, но его прессорная активность в 4 раза слабее АТП. Ангиотензин 1-7 образуется вследствие превращения ангиотензина I. По функциям он значительно отличается от АТП: он не вызывает прессорного действия, а наоборот, приводит к снижению АД благодаря секреции АДГ, стимуляции синтеза простагландинов, натрийуреза.

РААС оказывает регулирующее влияние на почечную функцию. АТП вызывает мощный спазм приносящей артериолы и снижение давления в капиллярах клубочка, уменьшение фильтрации в нефроне. В результате снижения фильтрации уменьшается реабсорбция натрия в проксимальном отделе нефрона, что приводит к увеличению концентрации натрия в дистальных канальцах и активации Na-чувствительных рецепторов плотного пятна в нефроне. По меха-низму обратной связи это сопровождается торможением выделения ренина и увеличением скорости клубочковой фильтрации.

Функционирование РААС связано с альдостероном и посредством механизма обратной связи. Альдостерон - важнейший регулятор объема внеклеточной жидкости и гомеостаза калия. Прямого действия на секрецию ренина и АТП альдостерон не оказывает, но возможно косвенное влияние через задержку натрия в организме. В регуляции секреции альдостерона участвуют АТП и электролиты, причем АТП - стимулирует, а натрий и калий - уменьшают его образование.

Гомеостаз электролитов тесно связан с активностью РААС. Натрий и калий не только влияют на активность ренина, но и изменяют чувствительность тканей к АТП. При этом в регуляции активности ренина большая роль принадлежит натрию, а в регуляции секреции альдостерона - калий и натрий имеют одинаковые влияния.

Физиологическая активация РААС наблюдается при потере натрия и жидкости, значительном снижении АД, сопровождающемся падением фильтрационного давления в почках, повышении активности симпатической нервной системы, а также под воздействием многих гуморальных агентов (вазопрессина, предсердного натрийуретического гормона, антидиуретического гормона).

Целый ряд сердечно-сосудистых заболеваний может способствовать патологической стимуляции РААС, в частности, при АГ, застойной сердечной недостаточности, остром инфаркте миокарда.

В настоящее время известно, что РАС функционирует не только в плазме (эндокринная функция), но и во многих тканях (головном мозге, сосудистой стенке, сердце, почках, надпочечниках, легких). Эти тканевые системы могут работать независимо от плазменной, на клеточном уровне (паракринная регуляция). Поэтому различают краткосрочные эффекты ATII, обусловленные свободно циркулирующей его фракцией в системном кровотоке, и отсроченные эффекты, регулируемые через тканевые РАС и влияющие на структурно-адаптационные механизмы поражения органов.

Ключевым ферментом РААС является ангиотензин-превращающий фермент (АПФ), он обеспечивает превращение ΑTI в ATII. Основное количество АПФ присутствует в системном кровотоке, обеспечивая образование циркулирующего АТII и краткосрочные геодинамические эффекты. Превращение АТ в ATII в тканях может осуществляться не только с помощью АПФ, но и другими ферментами (химазы, эндопероксиды, катепсин G и др.); считают, что им принадлежит ведущая роль в функционировании тканевых РАС и развитии длительных эффектов моделирования функции и структуры органов-мишеней.

АПФ идентичен ферменту кининазе II, участвующему в деградации брадикинина. Брадикинин - мощный вазодилататор, участвующий в регуляции микроциркуляции и ионном транспорте. Брадикинин имеет очень короткий период жизни и присутствует в кровотоке (тканях) в низких концентрациях; поэтому он проявлят свои эффекты как местный гормон (паракринно). Брадикинин способствует увеличению внутриклеточного Са 2 +, являющегося кофактором для NO-синтетазы, участвующей в образовании эндотелийрелаксирующего фактора (оксида азота или NO). Эндотелийрелаксирующий фактор, блокирующий сокращение мускулатуры сосудов и агрегацию тромбоцитов, является также ингибитором митоза и пролиферации гладкой мускулатуры сосудов, что обеспечивает антиатерогенное действие. Брадикинин также стимулирует синтез в эндотелии сосудов ПГЕ2 и ПГI2 (простациклина) - мощных вазодилататоров и тромбоцитарных антиагрегантов.

Таким образом, брадикинин и вся кининовая система являются противодействующей для РААС. Блокирование АПФ потенциально повышает уровень кининов в тканях сердца и сосудистой стенки, что обеспечивает антипролиферативный, антиишемический, антиатерогенный и антиагрегантный эффекты. Кинины способствуют увеличению кровотока, диуреза и натрийуреза без существенного изменения скорости клубочковой фильтрации. ПГ Е2 и ПГI2 также обладают диуретическим и натрийуретическим действием и увеличивают почечный кровоток.

Ещё в конце ХІХ века стало известно, что почки принимают активное участие в регуляции артериального давления. Они вырабатывают фермент – ренин, который с ангиотензином и альдостероном составляет РААС (ренин-ангиотензин-альдостероновую систему). Они влияют на водно-солевой обмен, артериальное давление (именно поэтому различные патологии почек сопровождаются ) и выполняют другие функции.

Что такое ренин-ангиотензин-альдостероновая система

Принцип действия РААС

Казалось бы, ренин – фермент, вырабатываемый почками, ангиотензиноген – гликопротеид, синтезируемый печенью, а альдостерон вообще гормон надпочечников – что между ними общего. Тем не менее, они составляют единую систему, которая запускается выработкой ренина в юкстагломерулярных клетках почек.

Существует несколько механизмов стимуляции синтеза фермента:

  1. Макулярный. Он срабатывает, если снижается поступление ионов натрия в дистальном извитом канальце.
  2. Внутрипочечный барорецепторный. Юкстагломерулярные клетки являются барорецепторами, они воспринимают растяжение стенок артериол, соответственно реагируют на снижение давления выработкой ренина.
  3. Симпатический. Юкстагломерулярные клетки иннервируются симпатической нервной системой, и как только к ним поступает сигнал, они тут же начинают синтезировать фермент, способствующий повышению давления. Именно поэтому при стрессах, психо-эмоциональных нагрузках возникает артериальная гипертензия.

Затем ренин поступает в кровь. Там он воздействует на гликопротеин ангиотензиноген, вырабатываемый печенью. Таким образом, ангиотензиноген превращается в ангиотензин І. Под влиянием ангиотензинпревращающего фермента (АПФ) отщепляется дипептид у ангиотензина І, и он становится самым мощным сосудосуживающим средством – ангиотензином ІІ. Кроме того, что он вызывает спазм гладкой мускулатуры, тормозит выработку брадикинина, он стимулирует синтез альдостерона. Этот гормон, вырабатываемый надпочечниками:

  • удерживает ионы натрия и воду;
  • выводит калий;
  • усиливает синтез АТФ-азы воздействуя на ДНК.

Как только нормализуется концентрация натрия в крови, прекращается выработка ренина. Все продукты реакций распадаются, давление нормализуется, и начинают синтезироваться вазодилататоры:

  • брадикинин;
  • каллидин.

Стимулироваться работа ренин-ангиотензин-альдостероновой системы может из-за различных патологий. Например, при стенозе почечной артерии запускается РААС. Из-за того, что вырабатывается эффективнейший вазоконстриктор ангиотензин ІІ, возникает спазм сосудов. А это приводит к неоправданной гипертонии. Давление значительно повышается, соответственно нарушается микроциркуляция крови. К органам приносится меньшее количество питательных веществ, жизненно необходимых микроэлементов и кислорода (без него клетки мозга начинают отмирать через 5 минут).

Функции РААС

Как только в дистальных канальцах почек понижается концентрация ионов натрия, на юкстагломерулярные клетки подаётся сигнал от симпатической нервной системы, барорецепторы реагируют на расширение стенки артериол, тут же включается ренин-ангиотензин-альдостероновая система. Все реакции происходят практически мгновенно, но даже за столь незначительное время РААС справляется со своими функциями:

  • поддерживает кислотно-щелочной баланс;
  • регулирует водно-солевой обмен;
  • влияет на восстановление объёма крови;
  • усиливает скорость клубочковой фильтрации.

На протекание химических реакций влияет кислотно-щелочной баланс. В организме он поддерживается благодаря работе почек, буферных систем и лёгких. Если в крови понижается концентрация натрия, запускается РААС. Под влиянием альдостерона ионы возвращаются в кровь и соединяются с анионами, тем самым создают щелочную среду. Из организма выводятся кислоты в виде аммонийных солей (мочевины). Этот процесс способствует сохранению в организме необходимых минералов (натрия, калия, магния) и выведению токсинов.

Как только под влиянием РААС в крови из-за увеличения солей повышается осмотическое давление, стимулируется выработка вазопрессина, оказывается влияние на синтез альдостерона.

  1. При понижении концентрации хлорида натрия под воздействием гормонов удерживается в организме натрий и выводится вода. Так в организме сохраняется необходимое количество солей.
  2. Как только концентрация хлорида натрия повысилась, перестаёт работать РААС. В почечных клубочках происходит выведение избытка солей из организма.

Таким образом регулируется водно-солевой обмен и тем самым поддерживается:

  • необходимый объём крови;
  • нормальная концентрация натрия.

Кроме вазопрессина и альдостерона регуляцию водно-солевого баланса осуществляет и ангиотензин. Когда количество воды в крови снижается, он сужает стенки сосудов, чтобы временно поддержать нормальное артериальное давление (если объём крови недостаточный, возникает гипотензия) и обеспечить все органы необходимыми веществами. Также он влияет на центр жажды, расположенный в 3 желудочке головного мозга, из-за чего начинает хотеться пить. Как только в организм поступает необходимая жидкость и соли, перестаёт вырабатываться ренин. На этом работа РААС временно прекращается.

Если в организме произошёл сбой ренин-ангиотензин-альдостероновой системы, например, из-за:

  • стеноза почечной артерии;
  • и др. патологий.

Это приведёт к тому, что будет постоянно повышенное давление.

Кроме того, ангиотензин ІІ оказывает прямое воздействие на центральную нервную систему, возникает импульс, который буквально даёт команду гладкой мускулатуре сократиться. Сжимаются стенки сосудов, учащается сердцебиение, поднимается артериальное давление.

Изучение механизма действия РААС привело к тому, что были изобретены эффективные :

  • блокаторы рецепторов к ангиотензину;
  • ингибиторы АПФ.

Все эти медикаменты влияют на отдельные элементы цепочки выработки ренина, превращения ангиотензина, синтеза альдостерона. Естественно, они негативно влияют на работу системы и способствуют понижению артериального давления.

Вывод


Механизм действия РААС

РААС принимает активное участие в водно-солевом обмене, поддержании нормального давления и кислотно-щелочного баланса в крови. За считанные доли секунд вырабатывается ренин, ангиотензин и альдостерон, которые регулируют постоянный объём крови и необходимую концентрацию воды и солей. Однако и эта система может давать сбои, возникающие из-за болезней почек, надпочечников, а это приводит к патологическому повышению давления. Вот поэтому при гипертензии обязательно необходима консультация уролога, нефролога.

Общий видеообзор ренин-ангиотензин-альдостероновой системы: