Наука стрельбы: Объяснение эффекта силы Кориолиса. Ускорение и сила Кориолиса – что это? Что такое сила кориолиса

Земля - дважды неинерциальная система отсчета, поскольку она движется вокруг Солнца и вращается вокруг своей оси. На тела неподвижные, как было показано в 5.2, действует лишь центробежная сила. В 1829 г. французский физик Г. Кориолис 18 показал, что на движущееся тело действует еще одна сила инерции. Ее называют силой Кориолиса. Эта сила всегда перпендикулярна оси вращения и направлению скорости о.

Появление кориолисовой силы можно обнаружить на следующем примере. Возьмем горизонтально расположенный диск, который может вращаться вокруг вертикальной оси. Прочертим на диске радиальную прямую ОА (рис. 5.3).

Рис. 5.3.

Запустим в направлении от О к А шарик со скоростью х>. Если диск не вращается, шарик должен катиться вдоль ОА. Если же диск привести во вращение в направлении, указанном стрелкой, то шарик будет катиться по кривой ОВ ч причем его скорость относительно диска быстро изменяет свое направление. Следовательно, по отношению к вращающейся системе отсчета шарик ведет себя так, как если бы на него действовала сила?. е, перпендикулярная направлению движения шарика.

Сила Кориолиса не является «настоящей» в смысле механики Ньютона. При рассмотрении движений относительно инерциальной системы отсчета такая сила вообще не существует. Она вводится искусствснно при рассмотрении движений в системах отсчета, вращающихся относительно инерциальных, чтобы придать уравнениям движения в таких системах формально такой же вид, что и в инерциальных системах отсчета.

Чтобы заставить шарик катиться вдоль О А , нужно сделать направляющую, выполненную в виде ребра. При качении шарика направляющее ребро действует на него с некоторой силой. Относительно вращающейся системы (диска) шарик движется с постоянной но направлению скоростью. Это можно объяснить тем, что эта сила уравновешивается приложенной к шарику силой инерции

здесь - сила Кориолиса , также являющаяся силой инерции; 1

(О - угловая скорость вращения диска.

Сила Кориолиса вызывает кориолисово ускорение. Выражение для этого ускорения имеет вид

Ускорение направлено перпендикулярно векторам со и и и максимально, если относительная скорость точки о ортогональна угловой скорости со вращения подвижной системы отсчета. Кориолисово ускорение равно нулю, если угол между векторами со и о равен нулю или п либо если хотя бы один из этих векторов равен нулю.

Следовательно, в общем случае, при использовании уравнений Ньютона во вращающейся системе отсчета, возникает необходимость учитывать центробежную, центростремительную силы инерции, а также кориолисову силу.

Таким образом, F. всегда лежит в плоскости, перпендикулярной к оси вращения. Сила Кориолиса возникает только в случае, когда тело изменяет свое положение по отношению к вращающейся системе отсчета.

Влияние кориолисовых сил необходимо учитывать в ряде случаев при движении тел относительно земной поверхности. Например, при свободном падении тел на них действует кориолисова сила, обусловливающая отклонение к востоку от линии отвеса. Эта сила максимальна на экваторе и обращается в нуль на полюсах. Летящий снаряд также испытывает отклонения, обусловленные кориолисовыми силами инерции. Например, при выстреле из орудия, направленного на север, снаряд будет отклоняться к востоку в северном полушарии и к западу - в южном.

” Вывод формулы для расчета силы Кориолиса можно посмотреть на примере задачи 5.1.

При стрельбе вдоль экватора силы Кориолиса будут прижимать снаряд к Земле, если выстрел произведен в восточном направлении.

Возникновение некоторых циклонов в атмосфере Земли происходит в результате действия силы Кориолиса. В северном полушарии вес устремляющиеся к месту пониженного давления воздушные потоки отклоняются вправо по своему движению.

Сила Кориолиса действует на тело, движущееся вдоль меридиана , в северном полушарии вправо и в южном влево (рис. 5.4).

Рис. 5.4.

Это приводит к тому, что у рек подмывается всегда правый берег в северном полушарии и левый в южном. Эти же причины объясняют неодинаковый износ рельсов железнодорожных путей.

Силы Кориолиса проявляются и при качаниях маятника.

В 1851 г. французский физик Ж. Фуко 19 установил в Пантеоне Парижа маятник массой 28 кг на тросе длиной 67 м (маятник Фуко). Такой же маятник массой 54 кг на тросе длиной 98 м недавно, к сожалению, был демонтирован в Исаакиевском соборе Санкт-Петербурга в связи с передачей собора в собственность церкви.

Для простоты предположим, что маятник расположен на полюсе (рис. 5.5). На северном полюсе сила Кориолиса будет направлена вправо по ходу маятника. В итоге траектория движения маятника будет иметь вид розетки.

Рис. 5.5.

Как следует из рисунка, плоскость качаний маятника поворачивается относительно Земли в направлении часовой стрелки, причем за сутки она совершает один оборот. Относительно гелиоцентрической системы отсчета дело обстоит так: плоскость качаний остается неизменной, а Земля поворачивается относительно нее, делая за сутки один оборот.

Таким образом, вращение плоскости качаний маятника Фуко дает непосредственное доказательство вращения Земли вокруг своей оси.

Если тело удаляется от оси вращения, то сила F K направлена противоположно вращению и замедляет его.

Если тело приближается к оси вращения, то F K направлена в сторону вращения.

С учетом всех сил инерции уравнение Ньютона для неинерциаль- ной системы отсчета (5.1.2) примет вид

где F bi = -та - сила инерции, обусловленная поступательным движением неинерциальной системы отсчета;

* г 1 гг

К». = та п и F fe =2w - две силы инерции, обусловленные вращательным движением системы отсчета;

а - ускорение тела относительно неинерциальнои системы отсчета.

В предыдущем параграфе было рассмотрено тело, неподвижное во вращающейся системе отсчета. Если во вращающейся системе отсчета тело движется, то, помимо центробежной силы, на него будет действовать ещё одна сила инерции, называемая силой Кориолиса или кориолисовой силой инерции.

Пусть шарик массой движется без трения вдоль радиуса диска (рис. 8.5) с постоянной скоростью , направленной в некую точку на краю диска.

Рис. 8.5. Отклонение шарика, движущегося во вращающейся системе отсчета

Если диск не вращается, то шарик движется по радиусу и попадает в точку . Если же диск привести во вращение с угловой скоростью , то к моменту достижения шариком края диска на месте точки окажется другая точка . Если шарик оставляет след, то он прочертит свою траекторию относительно диска - кривую линию . При этом на шарик не действуют никакие видимые силы, и относительно инерциальной системы он по-прежнему движется с постоянной скоростью . Скорость же шарика относительно диска изменяла свое направление. Значит, в системе отсчета, связанной с вращающимся диском, на шарик действовала сила инерции, не параллельная скорости . Стало быть, она не была направлена по радиусу, откуда следует, что эта сила отлична от рассмотренной выше центробежной силы инерции. Ее и называют силой Кориолиса .

Рис. 8.6 Движение шарика по гладкой поверхности вращающегося диска. Сверху - с точки зрения внешнего наблюдателя. Снизу - с точки зрения наблюдателя, неподвижного относительно диска

Дополнительная информация

http://kvant.mirror1.mccme.ru/1975/04/sila_koriolisa.html - журнал «Квант» - сила Кориолиса (Я. Смородинский).

Найдем выражение для силы Кориолиса в частном случае (рис. 8.7), когда частица массой движется относительно вращающейся системы отсчета К" равномерно по окружности, лежащей в плоскости, перпендикулярной к оси вращения , с центром на оси вращения.

Рис. 8.7. К выводу выражения для силы Кориолиса

Скорость частицы относительно вращающейся системы К" обозначим через . В неподвижной (инерциальной) системе отсчета К частица также движется по окружности, но ее линейная скорость равна

где - угловая скорость вращающейся системы, - радиус окружности. Для того, чтобы частица двигалась относительно неподвижной системы отсчета K по окружности со скоростью , на нее должна действовать направленная к центру окружности сила (например, натяжение нити), причем величина этой силы равна

Относительно вращающейся системы отсчета K" в этом случае частица движется с ускорением

Из полученного выше уравнения второго закона Ньютона для частицы получаем:

Слева стоит произведение массы на ускорение частицы во вращающейся системе отсчета. Значит, справа должны стоять силы, на нее действующие. Первое слагаемое понятно: это сила натяжения нити, которая одинакова как для инерциальной, так и для неинерциальной систем. С третьим слагаемым мы тоже уже имели дело: это направленная по радиусу (от центра) центробежная сила инерции. Второе слагаемое и есть сила Кориолиса. В данном случае она также направлена от центра, но зависит от скорости частицы. Модуль кориолисовой силы в этом примере равен . Ее направление совпадает с движением штопора, ручка которого поворачивается от вектора скорости к вектору угловой скорости .

Можно показать, что в общем случае сила Кориолиса определяется как

Сила Кориолиса ортогональна вектору скорости. В случае радиального движения, показанного на рис. 8.5, она отклоняла шарик направо, вынуждая его двигаться по траектории .

Возникновение силы Кориолиса при движении тела относительно вращающейся системы отсчета демонстрируется в опыте на рис. 8.6.

Дополнительная информация

http://www.plib.ru/library/book/17005.html - Стрелков С.П. Механика Изд. Наука 1971г. - стр.165–166 (§ 48): опыт Хайкина по демонстрации силы Кориолиса.

Сила Кориолиса действует только на тела, движущиеся относительно вращающейся системы отсчета, например, относительно Земли. Приведем некоторые примеры.

Рис. 8.8. Сила Кориолиса на поверхности Земного шара

В северном полушарии наблюдается более сильное подмывание правых берегов рек, правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые, а циклоны вращаются по часовой стрелке. В южном же полушарии все происходит наоборот.

При выстреле из орудия, направленного на север, снаряд будет отклоняться к востоку в северном полушарии и к западу - в южном (рис. 8.9).

Рис. 8.9. На Земле движущиеся тела отклоняются направо в северном полушарии, и налево в южном

При стрельбе вдоль экватора силы Кориолиса будут прижимать снаряд к земле, если выстрел произведен на запад, и поднимать его кверху, если выстрел произведен в восточном направлении.

Видео 8.9. Сила Кориолиса: попробуй, попади! Стрельба на вращающейся платформе.

Пример. Поезд массой = 150 тонн идет в меридиональном направлении на север со скоростью = 72 км/ч. Найдем, чему равна кориолисова сила, прижимающая его в боковом направлении к рельсам, и определим, каков эффект действия центробежной силы. Поезд находится на широте Москвы = 56°.

Угол между вектором угловой скорости суточного вращения Земли и касательной к меридиану равен широте места (рис. 8.10).

Рис. 8.10. Кориолисова сила направлена от нас перпендикулярно плоскости рисунка

Поэтому кориолисова сила равна

Подставляя числовые данные, находим

Эта сила соответствует весу массы

и составляет от веса поезда.

Расстояние поезда от оси вращения Земли равно , так что центробежная сила будет

Направлена она по перпендикуляру к оси вращения. Следовательно, ее составляющая

направленная вдоль радиуса Земли, уменьшает вес поезда:

Подставляя числовые данные, получаем

Это соответствует весу массы

и составляет 1,1·10 –3 от веса поезда.

Другая составляющая центробежной силы

направлена по касательной к меридиану и тормозит поезд. Она равна

что соответствует весу массы

и составляет 1,6·10 –3 от веса поезда.

Таким образом, влияние центробежной силы проявляется в десятых долях процента, а проявления кориолисовой силы - на порядок меньше (что связано, разумеется, с небольшой скоростью поезда).

Французский физик Фуко экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Подобный маятник до недавнего времени можно было увидеть в Петербурге в Исаакиевском соборе.

Колебания маятника Фуко зависят от того, как они были возбуждены. Если маятник отклонить на максимальный угол, а затем отпустить его без начальной скорости, то маятник будет колебаться, как изображено на рис. 10. Скорость движения маятника в положении максимального отклонения будет равна нулю.

Рис. 8.12. Колебания маятника Фуко при отклонении на максимальный угол и отпускании без начальной скорости

Несколько иной характер траектории получится, если маятник приводится в движение коротким толчком из положения равновесия. Этому случаю соответствует рис. 8.11. и 8.13. Скорость маятника в положении максимального отклонения соответствует скорости вращения Земли на широте наблюдения.

Рис. 8.13. Колебания маятника Фуко при сообщении ему скорости при отклонении на максимальный угол

Видео 8.10. Настольный маятник Фуко

Дополнительная информация

http://www.plib.ru/library/book/17005.html - Стрелков С.П. Механика Изд. Наука 1971 г. - стр.172–174: движение маятника Фуко.

http://mehanika.3dn.ru/load/24-1-0-3278 - Тарг С.М. Краткий курс теоретической механики, Изд. Высшая школа, 1986 г. - стр. 155–164, §§ 64-67, - преобразования скорости и ускорения материальной точки при переходе из одной системы отсчета в другую, теорема Кориолиса.

http://www.plib.ru/library/book/14978.html - Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. - стр. 353–356 (§ 67): выведены формулы для расчета отклонения падающих тел от направления отвеса.

http://kvant.mirror1.mccme.ru/1995/05/komu_nuzhna_vysokaya_bashnya.html - журнал «Квант» - из истории физики - падение тел с Пизанской башни и других высоких построек (А. Стасенко).

http://www.plib.ru/library/book/14978.html - Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. - стр. 360–366 (§ 69): проясняются физические причины приливов и отливов в морях и океанах на Земле.

Друзья мои, а вы никогда не задумывались, почему в северном полушарии Земли у рек, текущих без резких изгибов в довольно мягких породах, правый берег почти всегда довольно крутой, а левый - гораздо положе? Или почему Гольфстрим течет на север вдоль побережья Европы, а не Северной Америки? Или почему по Земле постоянно гуляют циклоны и антициклоны?
Для того чтобы ответить на все эти вопросы приготовьте правую руку и держите растопыренными большой, указательный и средний пальцы. С их помощью и разберемся.
Как мы понимаем, на любое покоящееся на Земле тело действует весьма приличная сила тяжести и маленькая центробежная сила, возникающая от вращения Земли вокруг своей оси. Их геометрическая сумма (по правилу параллелограмма) точно перпендикулярна поверхности Земли (точнее - покоящейся воды). Это абсолютно верно, но только для покоящихся тел.
А вот на движущиеся по Земле тела действует еще одна сила. Называемая Кориолисовой. Если бы Земля не вращалась вокруг своей оси, то и Кориолисовой и центробежной сил просто бы не было. Кориолисова сила в нашей обыденной жизни существенно меньше центробежной. И направлена она поперек траектории движения тела и поперек оси вращения Земли. Именно поэтому нам и понадобятся три пальца правой руки. Большой палец надо направить в направлении движения тела, а указательный - вдоль оси вращения Земли от южного полюса к северному. Тогда направление Кориолисовой силы будет указывать средний палец правой руки.
Замечу также, что сила Кориолиса пропорциональна скорости движущегося тела. И буду считать, что движущееся тело - это вода горячо любимой нами Волги. Если бы Волга была стоячим водоемом, то ее поверхность была бы точно перпендикулярна суммарной (тяжести и центробежной) силе. Но Волга течет с севера на юг (большой палец). Направив указательный палец вдоль оси вращения Земли мы увидим, что средний палец (сила Кориолиса) направлен на правый берег Волги. Отсюда ясно, что сила Кориолиса прижимает воду Волги к правому ее берегу. Насколько?
Не буду утомлять вас формулами и расчетами. Предположим только, что скорость течения Волги = 1 м/сек, а ее ширина = 1 км. Тогда простая оценка показывает, что у правого берега Волги уровень воды должен быть примерно на 1 (один) сантиметр выше, чем у левого. А если бы скорость течения была = 2 м/сек, то и уровень воды у правого берега был бы выше на 2 см, чем у левого.
И поскольку берега Волги сложены в основном из мягких пород, течение подтачивает именно правый берег. Из-за чего он становится круче. А русло Волги чрезвычайно медленно смещается на запад.
Живущие на берегах текущих на север рек могут точно так же понять, почему и у этих рек правые берега, как правило, круче левых. Разумеется, если берега рек сформированы из достаточно твердых (каменных) пород, то рассуждения о крутизне берегов теряют силу. Просто потому, что не все подвластно текущей воде.
Если теперь мы посмотрим на Гольфстрим, текущий с юга на север, то европейский берег будет для него правым, а североамериканский левым. Поэтому Гольфстрим и прижимается к Европе той самой Кориолисовой силой. Возможно, именно поэтому не следует слишком доверчиво воспринимать апокалиптические прогнозы об исчезновении Гольфстрима и замерзании Европы.
Что же касается циклонов и антициклонов, то это - предмет для отдельного поста.

Эффект от силы Кориолиса вступает в заметную силу когда производятся стрельба на очень дальние дистанции как представленная на картинке. Движение Земли вокруг своей оси двигает цель во время полета пули.

Когда вы находитесь на стрельбище, земля на которой вы стоите, кажется стабильной. Но на самом деле это большая сфера, летящая в космосе и одновременно вращающаяся по своей оси, с одним полным оборотом в 24 часа. Вращение земли может создавать проблемы для стрелков на сверхдальние дистанции. Во время продолжительного полета пули, вращение планеты вызывает наглядное отклонение цели от траектории пули при стрельбе на очень дальние дистанции. Это называется корреляционный эффект или эффект корреляции в баллистике.

Брайен Литц (Bryan Litz) из Прикладной Баллистики (Applied Ballistics) выпустил небольшое видео где он объясняет эффект силы Кориолиса. Брайан подмечает что этот эффект " очень незначителен. Стрелки любят возвышать его силу, так как он кажется очень таинственным. " В большинстве случаев при стрельбе до ~ 1000 м., сила Кориолиса не важна в учете. Если пользоваться Американской системой ввода поправок (1/4 MOA угловой минута = ~1" дюйм на 100 ярдов) на 1000 ярдов (914,4 м.) эффект можно будет скорректировать на прицеле одним щелчком (для большинства патронов). Даже после отметки в 1000 ярдов в условиях повышенного ветра, эффект силы Кориолиса может быть " потерян в общем шуме ". Но в очень благоприятных условиях стрельбы без ветра на дальние дистанции, Брайен утверждает что можно получить преимущество в точности используя баллистические решения с учетом корреляционного эффекта.

Браен продолжает: " Эффект силы Кориолиса...связан с вращение Земли. Вы по сути стреляете из одной точки в другую на вращающейся сфере, в инерционной системе координат. Последствия будут такие что если время полета пули будет достаточно продолжительным, пуля будет сносится от своей предполагаемой цели. Количество этого сноса очень мало - оно зависит от географической широты и направления стрельбы относительно планеты. "

Эффект силы Кориолиса очень трудно уловим. Со средним баллистическим коэффициентом и скоростью, у вас будет свободная дистанция до 1000 ярдов, до того как можно будет сделать поправку в один щелчок на прицеле. Брайан говорит: " эффект корреляции это НЕ то о чем следует думать при стрельбе по движущейся цели, это НЕ то о чем следует думать при стрельбе с сильным ветром, так как есть условия которые будут иметь более очевидное влияние, а эффект силы Кориолиса будет отвлекать вас от них. "

" Где действительно можно задуматься об использовании данного эффекта, использовать его на постоянной основе и он будет влиять на ваши показатели - это при стрельбе на сверхдальние дистанции по относительно малым целям в условиях малого ветра. Когда вы знаете скорость пули и баллистический коэффициент очень хорошо и есть безупречные условия, тогда вы заметите влияние силы Кориолиса. Вы получите больше отдачи в вашей деятельности, если будете учитывать эту силу только в вышеприведенных случаях. Но в большинстве случаев практической стрельбы на дальние дистанции, сила Кориолиса НЕ так важна. Что действительно важно это понять ваши приоритеты в стрельбе и учет их в процессе."

Вопрос 7. Неинерциальные системы отсчета. Силы инерции, понятие о принципе эквивалентности.

Системы отсчета, движущиеся с ускорением относительно инерциальной системы отсчета, называются неинерциальными .

Сила инерции - это сила, используемая для описания движения при переходе в неинерциальных системах отсчета (то есть при движении с ускорением). Эта сила равна по величине силе, вызывающей ускорение, но направлена в сторону, противоположную ускорению. Именно поэтому в ускоряющемся транспорте сила инерции тянет пассажиров назад, а в тормозящем транспорте - наоборот, вперед.

Сила инерции - векторная величина, численно равная произведению массы m материальной точки на модуль её ускорения и направленная противоположно ускорению.

Существует 2 главные разновидности сил инерции: кориолисова сила и переносная сила инерции. Переносная сила инерции состоит из 3 слагаемых

M- поступательная сила инерции

m 2 r - центробежная сила инерции

M[r]- вращательная сила инерции

В динамике относительным движением называется движение по отношению к неинерциальной системе отсчёта, для которой законы механики Ньютона несправедливы. Чтобы уравнения относительного движения материальной точки сохранили тот же вид, что и в инерциальной системе отсчёта, надо к действующей на точку силе взаимодействия с другими телами F присоединить переносную силу инерции F пер = –m a пер и Кориолиса силу инерции F kop = –m a kop , где m - масса точки. Тогда

m a oтн = F + F пер + F kop

ma o тн = F ma kop –ma пер

m a oтн = F+2 m [ V отн ]- mV 0 + m 2 r - m [r ]

F kop = –m a kop =2m[ V отн ]-кориолисова сила

F пер = –m a пер = -m
m 2 r - m [r ] - переносная сила инерции.

Примеры. Математический маятник, расположенный на движущейся с ускорением тележке. Маятник Любимова.

Центробежная сила инерции – сила, с которой движущаяся материальная точка действует на тела (связи), стесняющие свободу её движения и вынуждающие её двигаться криволинейно. (или Сила, с которой связь действует на материальную точку, равномерно движущуюся по окружности, в системе отсчета, связанной с этой точкой.)

F ц.б.=
, R- радиус кривизны траектории.

Рис. К понятию центробежной силы инерции.

Центробежная сила направлена от центра кривизны траектории по её главной нормали (при движении по окружности по радиусу от центра окружности).

Центробежная сила - это тоже сила инерции - она направлена против центростремительной силы, вызывающей круговое движение.

Центробежная сила и центростремительная сила равны по величине, направлены противоположно.

Сила Кориолиса - одна из сил инерции, вводимая для учёта влияния вращения подвижной системы отсчёта на относительное движение тела.

При движении тела относительно вращающейся системы отсчета появляется сила инерции, называемая силой Кориолиса или кориолисовой силой инерции. Проявление силы Кориолиса можно рассмотреть на диске, вращающемся вокруг вертикальной оси (рис.1).

На диске нанесена радиальная прямая ОА и находится движущийся со скоростью V в направлении от О к А шарик. Если диск не вращается, шарик будет катиться вдоль прочерченной прямой. Если же диск привести в равномерное вращение с угловой скоростью , то шарик будет катиться по кривой ОВ, причем его скорость V относительно диска будет изменять свое направление. Следовательно, по отношению к вращающейся системе отсчета шарик ведет себя так, как если бы на него (перпендикулярно к его скорости) действовала какая-то сила, которая, однако, не вызвана взаимодействием шарика с каким-либо телом. Это - сила инерции, названная силой Кориолиса. Величина этой силы пропорциональна массе тела m, относительной скорости движения тела V и угловой скорости вращения системы w: Fк=2mVw.

Сила Кориолиса Fc лежит в плоскости диска: она перпендикулярна векторам V и и направлена в сторону, определяемую векторным произведением : .

Сила Кориолиса как сила инерции направлена противоположно кориолисову ускорению a к:

Если векторы V и параллельны, то сила Кориолиса обращается в нуль.

Проявление действия силы Кориолиса:

Размытие правых берегов рек, текущих на юг в северном полушарии;

Движение маятника Фуко;

Наличие дополнительного бокового давления на рельсы, а, следовательно, их неравномерный износ, возникающих при движении поездов.

Сила Кориолиса проявляется, например, в работе маятника Фуко. Кроме того, поскольку Земля вращается, то сила Кориолиса проявляется и в глобальных масштабах. В северном полушарии сила Кориолиса направлена вправо от движения, поэтому правые берега рек в северном полушарии более крутые - их подмывает вода под действием этой силы. В южном полушарии всё происходит наоборот. Сила Кориолиса ответственна также и за возникновение циклонов и антициклонов.

Принцип эквивалентности Эйнштейна.

Поле силы инерции эквивалентно однородному полю силы тяжести. Это утверждение представляет собой принцип эквивалентности Эйнштейна.

Принципом эквивалентности и формулируется так: сила тяжести по своему физическому действию не отличается от равной ей по величине силе инерции.

Из принципа Эйнштейна вытекает эквивалентность инертной и гравитационной масс в ограниченной области пространства. В ограниченной, поскольку поле гравитационных сил в общем случае не является однородным (сила взаимодействия уменьшается по мере удаления тел друг от друга).