Сообщение на тему оптика по физике. Определения по оптике

Amangeldinov Mustafa Rakhatovich
Учащийся
Назарбаев Интеллектуальная Школа
mustafastu 123@ gmail . com

Оптика. История оптики.Применения оптики.

История развития оптики.

Оптика – учение о природе света, световых явлениях и взаимодействии света с веществом. И почти вся ее история – это история поиска ответа: что такое свет?

Одна из первых теорий света – теория зрительных лучей – была выдвинута греческим философом Платоном около 400 г. до н. э. Данная теория предполагала, что из глаза исходят лучи, которые, встречаясь с предметами, освещают их и создают видимость окружающего мира. Взгляды Платона поддерживали многие ученые древности и, в частности, Евклид (3 в до н. э.), исходя из теории зрительных лучей, основал учение о прямолинейности распространения света, установил закон отражения.

В те же годы были открыты следующие факты:

прямолинейность распространения света;

явление отражения света и закон отражения;

явление преломления света;

фокусирующее действие вогнутого зеркала.

Древние греки положили начало отрасли оптики, получившей позднее название геометрической.

Наиболее интересной работой по оптике, дошедшей до нас из средневековья, является работа арабского ученого Альгазена. Он занимался изучением отражения света от зеркал, явления преломления и прохождения света в линзах. Альгазен впервые высказал мысль о том, что свет обладает конечной скоростью распространения. Эта гипотеза явилась крупным шагом в понимании природы света.

В эпоху Возрождения было совершено множество различных открытий и изобретений; стал утверждаться экспериментальный метод, как основа изучения и познания окружающего мира.

На базе многочисленных опытных фактов в середине XVII века возникают две гипотезы о природе световых явлений:

корпускулярная, предполагавшая, что свет есть поток частиц, выбрасываемых с большой скоростью светящимися телами;

волновая, утверждавшая, что свет представляется собой продольные колебательные движения особой светоносной среды – эфира – возбуждаемой колебаниями частиц светящегося тела.

Все дальнейшее развитие учения о свете вплоть до наших дней – это история развития и борьбы этих гипотез, авторами которых были И. Ньютон и Х. Гюйгенс.

Основные положения корпускулярной теории Ньютона:

1) Свет состоит из малых частичек вещества, испускаемых во всех направлениях по прямым линиям, или лучам, светящимся телом, например, горящей свечой. Если эти лучи, состоящие из корпускул, попадают в наш глаз, то мы видим их источник.

2) Световые корпускулы имеют разные размеры. Самые крупные частицы, попадая в глаз, дают ощущение красного цвета, самые мелкие – фиолетового.

3) Белый цвет – смесь всех цветов: красного, оранжевого, желтый, зеленый, голубой, синий, фиолетовый.

4) Отражение света от поверхности происходит вследствие отражения корпускул от стенки по закону абсолютного упругого удара.

5) Явление преломления света объясняется тем, что корпускулы притягиваются частицами среды. Чем среда плотнее, тем угол преломления меньше угла падения.

6) Явление дисперсии света, открытое Ньютоном в 1666 г., он объяснил следующим образом. Каждый цвет уже присутствует в белом свете. Все цвета передаются через межпланетное пространство и атмосферу совместно и дают эффект в виде белого света. Белый свет – смесь разнообразных корпускул – испытывает преломление, пройдя через призму. С точки зрения механической теории, преломления обязано силам со стороны частиц стекла, действующим на световые корпускулы. Эти силы различны для разных корпускул. Они наибольшие для фиолетового и наименьшие для красного цвета. Путь корпускул в призме для каждого цвета будет преломляться по- своему, поэтому белый сложный луч расщепится на цветные составляющие лучи.

7) Ньютон наметил пути объяснения двойного лучепреломления, высказав гипотезу о том, что лучи света обладают "различными сторонами" – особым свойством, обуславливающим их различную преломляемость при прохождении двоякопреломляющего тела.

Корпускулярная теория Ньютона удовлетворительно объяснила многие оптические явления, известные в то время. Ее автор пользовался в научном мире колоссальным авторитетом, и вскоре теория Ньютона приобрела многих сторонников во всех странах.

Взгляды на природу света в XIX-XX столетиях.

В 1801 году Т. Юнг выполнил эксперимент, который изумил ученых мира: S – источник света; Э – экран; В и С – очень узкие щели, отстоящие друг от друга на 1-2 мм.

По теории Ньютона на экране должны появиться две светлые полоски, на самом деле появились несколько светлых и темных полос, а прямо против промежутка между щелями В и С появилась светлая линия Р. Опыт показал, что свет явление волновое. Юнг развил теорию Гюйгенса представлениями о колебаниях частиц, о частоте колебаний. Он сформулировал принцип интерференции, основываясь на котором, объяснил явление дифракции, интерференции и цвета тонких пластинок.

Французский физик Френель соединил принцип волновых движений Гюйгенса и принцип интерференции Юнга. На этой основе разработал строгую математическую теорию дифракции. Френель сумел объяснить все оптические явления, известные в то время.

Основные положения волновой теории Френеля.

Свет – распространение колебаний в эфире со скоростью, где модуль упругости эфира, r – плотность эфира;

Световые волны являются поперечными;

Световой эфир обладает свойствами упруго-твердого тела, абсолютно несжимаем.

При переходе из одной среды в другую упругость эфира не меняется, но меняется его плотность. Относительный показатель преломления вещества.

Поперечные колебания могут происходить одновременно по всем направлениям, перпендикулярным направлению распространению волны.

Работа Френеля завоевала признание ученых. Вскоре появился целый ряд экспериментальных и теоретических работ, подтверждающих волновую природу света.

В середине XIX века начали обнаруживаться факты, указывающие на связь оптических и электрических явлений. В 1846 г. М. Фарадей наблюдал вращения плоскостей поляризации света в телах, помещенных в магнитное поле. Фарадей ввел представление об электрическом и магнитном полях, как о своеобразных наложениях в эфире. Появился новый "электромагнитный эфир". Первым на эти взгляды обратил внимание английский физик Максвел. Он развил эти представления и построил теорию электромагнитного поля.

Электромагнитная теория света не зачеркнула механическую теорию Гюйгенса- Юнга- Френеля, а поставила ее на новый уровень. В 1900 г. немецкий физик Планк выдвинул гипотезу о квантовом характере излучения. Суть ее состояла в следующем:

излучение света носит дискретный характер;

поглощение происходит тоже дискретно-порциями, квантами.

Энергия каждого кванта представляется по формуле E=hn , где h – постоянная Планка, а n – это частота света.

Через пять лет после Планка вышла работа немецкого физика Эйнштейна о фотоэффекте. Эйнштейн считал:

свет, еще не вступивший во взаимодействие с веществом, имеет зернистую структуру;

структурным элементом дискретного светового излучения является фотон.

В 1913 г. датский физик Н. Бор опубликовал теорию атома, в которой объединил теорию квантов Планка-Эйнштейна с картиной ядерного строения атома.

Таким образом, появилась новая квантовая теория света, родившаяся на базе корпускулярной теории Ньютона. В роли корпускулы выступает квант.

Основные положения.

Свет испускается, распространяется и поглощается дискретными порциями – квантами.

Квант света – фотон несет энергию, пропорциональную частоте той волны, с помощью которой он описывается электромагнитной теорией E=hn .

Фотон, имеет массу (), импульс и момент количества движения ().

Фотон, как частица, существует только в движении скорость которого – это скорость распространения света в данной среде.

При всех взаимодействиях, в которых участвует фотон, справедливы общие законы сохранения энергии и импульса.

Электрон в атоме может находиться только в некоторых дискретных устойчивых стационарных состояниях. Находясь в стационарных состояниях, атом не излучает энергию.

При переходе из одного стационарного состояния в другое атом излучает (поглощает) фотон с частотой, (где Е 1 и Е 2 – энергии начального и конечного состояния).

С возникновением квантовой теории выяснилось, что корпускулярные и волновые свойства являются лишь двумя сторонами, двумя взаимосвязанными проявлениями сущности света. Они не отражают диалектическое единство дискретности и континуальности материи, выражающейся в одновременном проявлении волновых и корпускулярных свойств. Один и тот же процесс излучения может быть описан, как с помощью математического аппарата для волн, распространяющихся в пространстве и во времени, так и с помощью статистических методов предсказания появления частиц в данном месте и в данное время. Обе эти модели могут быть использованы одновременно, и в зависимости от условий предпочтение отдается одной из них.

Достижения последних лет в области оптики оказались возможными благодаря развитию, как квантовой физики, так и волновой оптики. В наши дни теория света продолжает развиваться.

Волновые свойства света и геометрическая оптика.

Оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом.

Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть понятны в рамках геометрической оптики, которая оперирует понятием отдельных световых лучей, подчиняющихся известным законам преломления и отражения и независимых друг от друга. Для понимания более сложных явлений нужна физическая оптика, рассматривающая эти явления в связи с физической природой света. Физическая оптика позволяет вывести все законы геометрической оптики и установить границы их применимости. Без знания этих границ формальное применение законов геометрической оптики может в конкретных случаях привести к результатам, противоречащим наблюдаемым явлениям. Поэтому нельзя ограничиваться формальным построением геометрической оптики, а необходимо смотреть на нее как на раздел физической оптики.

Понятие светового луча можно получить из рассмотрения реального светового пучка в однородной среде, из которого при помощи диафрагмы выделяется узкий параллельный пучок. Чем меньше диаметр этих отверстий, тем уже выделяемый пучок, и в пределе, переходя к отверстиям сколь угодно малым, можно казалось бы получить световой луч как прямую линию. Но подобный процесс выделения сколь угодно узкого пучка (луча) невозможен вследствие явления дифракции. Неизбежное угловое расширение реального светового пучка, пропущенного через диафрагму диаметра D, определяется углом дифракции j ~l /D . Только в предельном случае, когда l =0, подобное расширение не имело бы места, и можно было бы говорить о луче как о геометрической линии, направление которой определяет направление распространения световой энергии.

Таким образом, световой луч – это абстрактное математическое понятие, а геометрическая оптика является приближенным предельным случаем, в который переходит волновая оптика, когда длина световой волны стремится к нулю.

Глаз как оптическая система.

Органом зрения человека являются глаза, которые во многих отношениях представляют собой весьма совершенную оптическую систему.

В целом глаз человека - это шарообразное тело диаметром около 2,5 см, которое называют глазным яблоком (рис.5). Непрозрачную и прочную внешнюю оболочку глаза называют склерой, а ее прозрачную и более выпуклую переднюю часть - роговицей. С внутренней стороны склера покрыта сосудистой оболочкой, состоящей из кровеносных сосудов, питающих глаз. Против роговицы сосудистая оболочка переходит в радужную оболочку, неодинаково окрашенную у различных людей, которая отделена от роговицы камерой с прозрачной водянистой массой.

В радужной оболочке имеется круглое отверстие, называемое зрачком, диаметр которого может изменяться. Таким образом, радужная оболочка играет роль диафрагмы, регулирующей доступ света в глаз. При ярком освещении зрачок уменьшается, а при слабом освещении - увеличивается. Внутри глазного яблока за радужной оболочкой расположен хрусталик, который представляет собой двояковыпуклую линзу из прозрачного вещества с показателем преломления около 1,4. Хрусталик окаймляет кольцевая мышца, которая может изменять кривизну его поверхностей, а значит, и его оптическую силу.

Сосудистая оболочка с внутренней стороны глаза покрыта разветвлениями светочувствительного нерва, особенно густыми напротив зрачка. Эти разветвления образуют сетчатую оболочку, на которой получается действительное изображение предметов, создаваемое оптической системой глаза. Пространство между сетчаткой и хрусталиком заполнено прозрачным стекловидным телом, имеющим студенистое строение. Изображение предметов на сетчатке глаза получается перевернутое. Однако деятельность мозга, получающего сигналы от светочувствительного нерва, позволяет нам видеть все предметы в натуральных положениях.

Когда кольцевая мышца глаза расслаблена, то изображение далеких предметов получается на сетчатке. Вообще устройство глаза таково, что человек может видеть без напряжения предметы, расположенные не ближе 6 метра от глаза. Изображение более близких предметов в этом случае получается за сетчаткой глаза. Для получения отчетливого изображения такого предмета кольцевая мышца сжимает хрусталик всё сильнее до тех пор, пока изображение предмета не окажется на сетчатке, а затем удерживает хрусталик в сжатом состоянии.

Таким образом, "наводка на фокус” глаза человека осуществляется изменением оптической силы хрусталика с помощью кольцевой мышцы. Способность оптической системы глаза создавать отчетливые изображения предметов, находящих на различных расстояниях от него, называют аккомодацией (от латинского "аккомодацио” – приспособление). При рассматривании очень далёких предметов в глаз попадают параллельные лучи. В этом случае говорят, что глаз аккомодирован на бесконечность.

Аккомодация глаза не бесконечна. С помощью кольцевой мышцы оптическая сила глаза может увеличиваться не больше чем на 12 диоптрий. При долгом рассматривании близких предметов глаз устает, а кольцевая мышца начинает расслабляться и изображение предмета расплывается.

Глаза человека позволяют хорошо видеть предметы не только при дневном освещении. Способность глаза приспосабливаться к различной степени раздражения окончаний светочувствительного нерва на сетчатке глаза, т.е. к различной степени яркости наблюдаемых объектов называют адаптацией.

Сведение зрительных осей глаз на определенной точке называется конвергенцией. Когда предметы расположены на значительном расстоянии от человека, то при пере воде глаз с одного предмета на другой между осями глаз практически не изменяется, и человек теряет способность правильно определять положение предмета. Когда предметы находятся очень далеко, то оси глаз располагаются параллельно, и человек не может даже определить, движется предмет или нет, на который он смотрит. Некоторую роль в определении положения тел играет и усилие кольцевой мышцы, которая сжимает хрусталик при рассматривании предметов, расположенных недалеко от человека.

Спектроскоп.

Для наблюдения спектров пользуются спектроскопом.

Наиболее распространенный призматический спектроскоп состоит из двух труб, между которыми помещают трехгранную призму.

В трубе А, называемой коллиматором имеется узкая щель, ширину которой можно регулировать поворотом винта. Перед щелью помещается источник света, спектр которого необходимо исследовать. Щель располагается в плоскости коллиматора, и поэтому световые лучи из коллиматора выходят в виде параллельного пучка. Пройдя через призму, световые лучи направляются в трубу В, через которую наблюдают спектр. Если спектроскоп предназначен для измерений, то на изображение спектра с помощью специального устройства накладывается изображение шкалы с делениями, что позволяет точно установить положение цветовых линий в спектре.

Оптический измерительный прибор.

Оптический измерительный прибор - средство измерения, в котором визирование (совмещение границ контролируемого предмета с визирной линией, перекрестием и т.п.) или определение размера осуществляется с помощью устройства с оптическим принципом действия. Различают три группы оптических измерительных приборов: приборы с оптическим принципом визирования и механическим способом отчета перемещения; приборы с оптическим способом визирования и отчета перемещения; приборы, имеющие механический контакт с измерительным прибором, с оптическим способом определения перемещения точек контакта.

Из приборов первой распространение получили проекторы для измерения и контроля деталей, имеющих сложный контур, небольшие размеры.

Наиболее распространенный прибор второй - универсальный измерительный микроскоп, в котором измеряемая деталь перемещается на продольной каретке, а головной микроскоп - на поперечной.

Приборы третьей группы применяют для сравнения измеряемых линейных величин с мерками или шкалами. Их объединяют обычно под общим названием компараторы. К этой группе приборов относятся оптиметр (оптикатор, измерительная машина, контактный интерферометр, оптический дальномер и др.).

Оптические измерительные приборы также широко распространены в геодезии (нивелир, теодолит и др.).

Теодолит - геодезический инструмент для определения направлений и измерения горизонтальных и вертикальных углов при геодезических работах, топографической и маркшейдерских съемках, в строительстве и т.п.

Нивелир - геодезический инструмент для измерения превышений точек земной поверхности - нивелирования, а также для задания горизонтальных направлений при монтажных и т.п. работах.

В навигации широко распространён секстант - угломерный зеркально-отражательный инструмент для измерения высот небесных светил над горизонтом или углов между видимыми предметами с целью определения координат места наблюдателя. Важнейшая особенность секстанта - возможность совмещения в поле зрения наблюдателя одновременно двух предметов, между которыми измеряется угол, что позволяет пользоваться секстантом на самолёте и на корабле без заметного снижения точности даже во время качки.

Перспективным направлением в разработке новых типов оптических измерительных приборов является оснащение их электронными отсчитывающими устройствами, позволяющими упростить отсчет показаний и визирования, и т.п.

Заключение.

Практическое значение оптики и её влияние на другие отрасли знания исключительно велики. Изобретение телескопа и спектроскопа открыло перед человеком удивительнейший и богатейший мир явлений, происходящих в необъятной Вселенной. Изобретение микроскопа произвело революцию в биологии. Фотография помогла и продолжает помогать чуть ли не всем отраслям науки. Одним из важнейших элементов научной аппаратуры является линза. Без неё не было бы микроскопа, телескопа, спектроскопа, фотоаппарата, кино, телевидения и т.п. не было бы очков, и многие люди, которым перевалило за 50 лет, были бы лишены возможности читать и выполнять многие работы, связанные со зрением.

Область явлений, изучаемая физической оптикой, весьма обширна. Оптические явления теснейшим образом связаны с явлениями, изучаемыми в других разделах физики, а оптические методы исследования относятся к наиболее тонким и точным. Поэтому неудивительно, что оптике на протяжении длительного времени принадлежала ведущая роль в очень многих фундаментальных исследованиях и развитии основных физических воззрений. Достаточно сказать, что обе основные физические теории прошлого столетия - теория относительности и теория квантов - зародились и в значительной степени развились на почве оптических исследований. Изобретение лазеров открыло новые широчайшие возможности не только в оптике, но и в её приложениях в различных отраслях науки и техники.

Список литературы. Арцыбышев С.А. Физика - М.: Медгиз, 1950.

    Жданов Л.С. Жданов Г.Л. Физика для средних учебных заведений - М.: Наука, 1981.

    Ландсберг Г.С. Оптика - М.: Наука, 1976.

    Ландсберг Г.С. Элементарный учебник физики. - М.: Наука, 1986.

    Прохоров А.М. Большая советская энциклопедия. - М.: Советская энциклопедия, 1974.

    Сивухин Д.В. Общий курс физики: Оптика - М.: Наука, 1980.

АБСОЛЮТНО ЧЕРНОЕ ТЕЛО – мысленная модель тела, которое при любой температуре полностью поглощает все падающее на него электромагнитное излучение независимо от спектрального состава. Излучение А.ч.т. определяется только его абсолютной температурой и не зависит от природы вещества.

БЕЛЫЙ СВЕТ - сложноеэлектромагнитное излучение, вызывающее в глазах человека ощущение, нейтральное в цветовом отношении.

ВИДИМОЕ ИЗЛУЧЕНИЕ - оптическое излучение с длинами волн 380 - 770 нм, способное вызывать зрительное ощущение в глазах человека.

ВЫНУЖДЕННОЕ ИЗЛУЧЕНИЕ , индуцированное излучение - испускание электромагнитных волн частицами вещества (атомами, молекулами и др.), находящимися в возбужденном, т.е. неравновесном, состоянии под действием внешнего вынуждающего излучения. В.и. когерентно (См. когерентность ) с вынуждающим излучением и при определенных условиях может привести к усилению и генерации электромагнитных волн. См. также квантовый генератор .

ГОЛОГРАММА - зарегистрированная на фотопластинке интерференционная картина, образованная двумя когерентными волнами (см.когерентность ): опорной волной и волной, отраженной от объекта, освещенного тем же источником света. При восстановлении Г. мы воспринимаем объемное изображение объекта.

ГОЛОГРАФИЯ - метод получения объемных изображений предметов, основанный на регистрации и последующем восстановлении фронта волны, отраженной этими предметами. Получение голограммы основано на .

ГЮЙГЕНСА ПРИНЦИП - метод, позволяющий определить положение фронта волны в любой момент времени. Согласно г.п. все точки, через которые проходит фронт волны в момент времени t, являются источниками вторичных сферических волн, а искомое положение фронта волны в момент времени t+Dt совпадает с поверхностью, огибающей все вторичные волны. Позволяет объяснить законы отражения и преломления света.

ГЮЙГЕНСА - ФРЕНЕЛЯ - ПРИНЦИП - приближенный метод решения задач о распространении волн. Г.-Ф. п. гласит: в любой точке, находящейся вне произвольной замкнутой поверхности, охватывающей точечный источник света, световая волна, возбуждаемая этим источником, может быть представлена как результат интерференции вторичных волн, излучаемых всеми точками указанной замкнутой поверхности. Позволяет решать простейшие задачи .

ДАВЛЕНИЕ СВЕТА - давление, производимое светом на освещаемую поверхность. Играет большую роль в космических процессах (образование хвостов комет, равновесие крупных звезд и т.д.).

ДЕЙСТВИТЕЛЬНОЕ ИЗОБРАЖЕНИЕ - см. .

ДИАФРАГМА - устройство для ограничения или изменения светового пучка в оптической системе (напр., зрачок глаза, оправа линзы, Д. объектива фотоаппарата).

ДИСПЕРСИЯ СВЕТА - зависимость абсолютного показателя преломления вещества от частоты света. Различают нормальную Д., при которой с увеличением частоты скорость световой волны убывает, и аномальную Д., при которой скорость волны растет. Вследствие Д.с. узкий пучок белого света, проходя сквозь призму из стекла или другого прозрачного вещества, разлагается в дисперсионный спектр, образуя на экране радужную полоску.

ДИФРАКЦИОННАЯ РЕШЕТКА – физический прибор, представляющий из себя совокупность большого числа параллельных штрихов одинаковой ширины, нанесенных на прозрачную или отражающую поверхность на одинаковом расстоянии один от другого. В результате на Д.р. образуется дифракционный спектр - чередование максимумов и минимумов интенсивности света.

ДИФРАКЦИЯ СВЕТА - совокупность явлений, которые обусловлены волновой природой света и наблюдаются при его распространении в среде с резко выраженными неоднородностями (напр., при прохождении через отверстия, вблизи границ непрозрачных тел и т.д.). В узком смысле под Д.с. понимают огибание светом малых препятствий, т.е. отклонение от законов геометрической оптики. Играет важную роль в работе оптических приборов, ограничивая их разрешающую способность .

ДОПЛЕРА ЭФФЕКТ – явление изменение частоты колебаний звуковых или электромагнитных волн, воспринимаемой наблюдателем, вследствие взаимного движения наблюдателя и источника волн. При сближении обнаруживается повышение частоты, при удалении - понижение.

ЕСТЕСТВЕННЫЙ СВЕТ - совокупность некогерентных световых волн со всеми возможными плоскостями колебаний и с одинаковой интенсивностью колебаний в каждой из таких плоскостей. Е.с. излучают практически все природные источники света, т.к. они состоят из большого числа различно ориентированных центров излучения (атомов, молекул), испускающих световые волны, фаза и плоскость колебаний которых могут принимать все возможные значения. См. также поляризация света, когерентность.

ЗЕРКАЛО ОПТИЧЕСКОЕ – тело с полированной или покрытой отражающим слоем (серебро, золото, алюминий и т.д.) поверхностью, на которой происходит отражение, близкое к зеркальному (см. отражение ).

ИЗОБРАЖЕНИЕ ОПТИЧЕСКОЕ – изображение объекта, получаемое в результате действия оптической системы (линз, зеркал) на световые лучи, испускаемые или отражаемые объектом. Различают действительное (получается на экране или сетчатке глаза при пересечении лучей, прошедших через оптическую систему) и мнимоеИ.о. (получается на пересечении продолжений лучей).

ИНТЕРФЕРЕНЦИЯ СВЕТА - явление наложения двух или нескольких когерентных световых волн, линейно поляризованных в одной плоскости, при котором в пространстве происходит перераспределение энергии результирующей световой волны в зависимости от соотношения между фазами этих волн. Результат И.с., наблюдаемый на экране или фотопластинке, называется интерференционной картиной. И. белого света приводит к образованию радужной картины (цвета тонких пленок и т.д.). Находит применение в голографии, при просветлении оптики и т.п.

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ - электромагнитное излучение с длинами волн от 0,74 мкм до 1-2 мм. Испускается всеми телами, имеющими температуру выше абсолютного нуля (тепловое излучение).

КВАНТ СВЕТА - то же, что фотон .

КОЛЛИМАТОР - оптическая система, предназначенная для получения пучка параллельных лучей.

КОМПТОНА ЭФФЕКТ – явление рассеяния электромагнитного излучения малых длин волн (рентгеновского и гамма излучения) на свободных электронах, сопровождающееся увеличением длины волны .

ЛАЗЕР , оптический квантовый генератор - квантовый генератор электромагнитного излучения в оптическом диапазоне. Генерирует монохроматическое когерентное электромагнитное излучение, которое обладает узкой направленностью и значительной удельной мощностью. Применяется в оптической локации, для обработки твердых и тугоплавких материалов, в хирургии, спектроскопии и голографии, для нагрева плазмы. Ср. Мазер.

ЛИНЕЙЧАТЫЕ СПЕКТРЫ - спектры, состоящие из отдельных узких спектральных линий. Излучаются веществами в атомарном состоянии.

ЛИНЗА оптическая - прозрачное тело, ограниченное двумя криволинейными (чаще сферическими) или криволинейной и плоской поверхностями. Линзу называют тонкой, если ее толщина мала по сравнению с радиусами кривизны ее поверхностей. Различают собирающие (преобразующие параллельный пучок лучей в сходящийся) и рассеивающие (преобразующие параллельный пучок лучей в расходящийся) линзы. Применяются в оптических, оптико-механических, фотографических приборах.

ЛУПА - собирающая линза или система линз с небольшим фокусным расстоянием (10 - 100 мм), дает 2 - 50-кратное увеличение.

ЛУЧ – воображаемая линия, вдоль которой распространяется энергия излучения в приближении геометрической оптики , т.е. если не наблюдаются дифракционные явления.

МАЗЕР - квантовый генератор электромагнитного излучения в сантиметровом диапазоне. Характеризуется высокой монохроматичностью, когерентностью и узкой направленностью излучения. Применяется в радиосвязи, радиоастрономии, радиолокации, а также как генератор колебаний стабильной частоты. Ср. .

МАЙКЕЛЬСОНА ОПЫТ - опыт, поставленный с целью измерить влияние движения Земли на значение скорости света . Отрицательный результат М.о. стал одним из экспериментальных оснований относительности теории .

МИКРОСКОП - оптический прибор для наблюдения малых объектов, невидимых невооруженным глазом. Увеличение микроскопа ограничивается и не превышает 1500. Ср. электронный микроскоп.

МНИМОЕ ИЗОБРАЖЕНИЕ - см. .

МОНОХРОМАТИЧЕСКОЕ ИЗЛУЧЕНИЕ – мысленная модель электромагнитного излучения одной определенной частоты. Строгого м.и. не существует, т.к. всякое реальное излучение ограничено во времени и охватывает некоторый интервал частот. Источники излучения близкого к м. - квантовые генераторы.

ОПТИКА - раздел физики, изучающий закономерности световых (оптических) явлений, природу света и его взаимодействия с веществом.

ОПТИЧЕСКАЯ ОСЬ - 1) ГЛАВНАЯ - прямая, на которой расположены центры преломляющих или отражающих поверхностей, образующих оптическую систему; 2) ПОБОЧНАЯ - любая прямая, проходящая через оптический центр тонкой линзы.

ОПТИЧЕСКАЯ СИЛА линзы - величина, применяемая для описания преломляющего действие линзы и обратная фокусному расстоянию. D=1/F . Измеряется в диоптриях(дптр).

ОПТИЧЕСКОЕ ИЗЛУЧЕНИЕ - электромагнитное излучение, длины волн которого находятся в интервале от 10нм до 1 мм. К о.и. относятся инфракрасное излучение, , .

ОТРАЖЕНИЕ СВЕТА – процесс возвращения световой волны при ее падении на поверхность раздела двух сред, имеющих различные показатели преломления. обратно в первоначальную среду. Благодаря о.с. мы видим тела, не излучающие свет. Различают зеркальное отражение (параллельный пучок лучей сохраняет параллельность после отражения) и диффузное отражение (параллельный пучок преобразуется в расходящийся).

– явление, наблюдающееся при переходе света из оптически более плотной среды в оптически менее плотную, если угол падения больше предельного угла падения , где n – показатель преломления второй среды относительно первой. При этом свет полностью отражается от границы раздела сред.

ОТРАЖЕНИЯ ВОЛН ЗАКОН - луч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем угол падения равен углу преломления. Закон справедлив для зеркального отражения.

ПОГЛОЩЕНИЕ СВЕТА - уменьшение энергии световой волны при ее распространении в веществе, происходящее вследствие преобразования энергии волны во внутреннюю энергию вещества или энергию вторичного излучения, имеющего иной спектральный состав и иное направление распространения.

1) АБСОЛЮТНЫЙ - величина равная отношению скорости света в вакууме к фазовой скорости света в данной среде: . Зависит от химического состава среды, ее состояния (температуры, давления и т.п.) и частоты света (см. дисперсия света) .2) ОТНОСИТЕЛЬНЫЙ - (п.п. второй среды относительно первой) величина равная отношению фазовой скорости в первой среде к фазовой скорости во второй: . О.п.п. равен отношению абсолютного показателя преломления второй среды к абсолютному п.п. перовой среды .

ПОЛЯРИЗАЦИЯ СВЕТА – явление, приводящее к упорядочиванию векторов напряженности электрического поля и магнитной индукции световой волны в плоскости, перпендикулярной световому лучу. Чаще всего возникает при отражении и преломлении света, а также при распространении света в анизотропной среде.

ПРЕЛОМЛЕНИЕ СВЕТА – явление, заключающееся в изменении направления распространения света (электромагнитной волны) при переходе из одной среды в другую, отличающуюся от первой показателем преломления . Для преломления выполняется закон: луч падающий, луч преломленный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, причем для данных двух сред отношение синуса угла падения к синусу угла преломления есть величина постоянная, называемая относительным показателем преломления второй среды относительно первой. Причиной преломления является различие фазовых скоростей в разных средах.

ПРИЗМА ОПТИЧЕСКАЯ - тело из прозрачного вещества, ограниченное двумя непараллельными плоскостями, на которых происходит преломление света. Применяется в оптических и спектральных приборах.

РАЗНОСТЬ ХОДА физическая величина, равная разности оптических длин путей двух световых лучей.

РАССЕЯНИЕ СВЕТА – явление, заключающееся в отклонении распространяющегося в среде светового пучка во всевозможных направлениях. Обусловлено неоднородностью среды и взаимодействием света с частицами вещества, при котором изменяется направление распространения, частота и плоскость колебаний световой волны.

СВЕТ , световое излучение - , которое может вызвать зрительное ощущение.

СВЕТОВАЯ ВОЛНА - электромагнитная волна в диапазоне длин волн видимого излучения. Частота (набор частот) с.в. определяет цвет, энергия с.в. пропорциональна квадрату ее амплитуды.

СВЕТОВОД - канал для передачи света, имеющий размеры во много раз превышающие длину волны света. Свет в с. распространяется благодаря полному внутреннему отражению.

СКОРОСТЬ СВЕТА в вакууме (c) - одна из основных физических постоянных, равная скорости распространения электромагнитных волн в вакууме. с=(299 792 458 ± 1,2)м/с . С.с. - предельная скорость распространения любых физических взаимодействий.

СПЕКТР ОПТИЧЕСКИЙ - распределение по частотам (или длинам волн) интенсивности оптического излучения некоторого тела (спектр испускания) или интенсивности поглощения света при его прохождении через вещество (спектр поглощения). Различают С.о.: линейчатые, состоящие из отдельных спектральных линий; полосатые, состоящие из групп (полос) близких спектральных линий ; сплошные, соответствующие излучению (испусканию) или поглощению света в широком интервале частот.

СПЕКТРАЛЬНЫЕ ЛИНИИ - узкие участки в спектрах оптических, соответствующие практически одной частоте (длине волны). Каждая С. л. отвечает определённомуквантовому переходу.

СПЕКТРАЛЬНЫЙ АНАЛИЗ - физический метод качественного и количественного анализа химического состава веществ, основанный на изучении их спектров оптических. Отличается высокой чувствительностью и применяется в химии, астрофизике, металлургии, геологической разведке и т. д. Теоретической основой С. а. является .

СПЕКТРОГРАФ - оптический прибор для получения и одновременной регистрации спектра излучения. Основная часть С. - оптическая призма или .

СПЕКТРОСКОП - оптический прибор для визуального наблюдения спектра излучения. Основная часть С.- оптическая призма.

СПЕКТРОСКОПИЯ - раздел физики, изучающий спектры оптические с целью выяснения строения атомов, молекул, а также вещества в его различных агрегатных состояниях.

УВЕЛИЧЕНИЕ оптической системы - отношение размеров изображения, даваемого оптической системой, к истинным размерам предмета.

УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ - электромагнитное излучение с длиной волн в вакууме от 10 нм до 400 нм. Вызывают у многих веществ и люминесценцию. Биологически активно.

ФОКАЛЬНАЯ ПЛОСКОСТЬ - плоскость, перпендикулярная к оптической оси системы и проходящая через ее главный фокус.

ФОКУС - точка, в которой собирается прошедший через оптическую систему параллельный пучок световых лучей. Если пучок параллелен главной оптической оси системы, то Ф. лежит на этой оси и называется главным.

ФОКУСНОЕ РАССТОЯНИЕ - расстояние между оптическим центром тонкой линзы и фокусом.ФОТОЭФФЕКТ , фотоэлектрический эффект – явление испускания электронов веществом под действием электромагнитного излучения (внешний ф.). Наблюдается в газах, жидкостях и твердых телах. Открыт Г.Герцем и исследован А.Г.Столетовым. Основные закономерности ф. объяснены на основе квантовых представлений А.Эйнштейном.

ЦВЕТ - зрительное ощущение, вызываемое светом в соответствии с его спектральным составом и интенсивностью отражаемого или испускаемого излучения.

Шемяков Н. Ф.

Физика. ч. 3. Волновая и квантовая оптика, строение атома и ядра, физическая картина мира.

Излагаются физические основы волновой и квантовой оптик, строение атома и ядра, физическая картина мира в соответствии с программой общего курса физики для технических вузов.

Особое внимание уделяется раскрытию физического смысла, содержания основных положений и понятий статистической физики, а также практическому применению рассматриваемых явлений с учетом выводов классической, релятивистской и квантовой механики.

Предназначено студентам 2-го курса дистанционного обучения, может использоваться студентами очной формы обучения, аспирантами и преподавателями физики.

С небес космические ливни заструились, Неся потоки позитронов на хвостах комет. Мезоны, даже бомбы появились, Каких там резонансов только нет...

7. ВОЛНОВАЯ ОПТИКА

1. Природа света

Согласно современным представлениям свет имеет корпускулярноволновую природу. С одной стороны, свет ведет себя подобно потоку частиц - фотонов , которые излучаются, распространяются и поглощаются в виде квантов. Корпускулярная природа света проявляется, например, в явлениях

фотоэффекта, эффекта Комптона. С другой стороны, свету присущи волновые свойства. Свет - электромагнитные волны. Волновая природа света проявляется, например, в явлениях интерференции, дифракции, поляризации, дисперсии и др. Электромагнитные волны являются

поперечными.

В электромагнитной волне происходят колебания векторов

электрического поля E и магнитного поля H , а не вещества как, например, в случае волн на воде или в натянутом шнуре. Электромагнитные волны распространяются в вакууме со скоростью с 3 108 м/с.Таким образом, свет является реальным физическим объектом, который не сводится ни к волне, ни к частице в обычном смысле. Волны и частицы представляют собой лишь две формы материи, в которых проявляется одна и та же физическая сущность.

7.1. Элементы геометрической оптики

7.1.1. Принцип Гюйгенса

При распространении волн в среде, в том

числе и электромагнитных, для нахождения нового

фронта волны в любой момент времени

используют принцип Гюйгенса.

Каждая точка фронта волны является

источником вторичных волн.

В однородной изотропной среде волновые

поверхности вторичных волн имеют вид сфер

радиуса v t,

где v cкорость распространения

волны в среде.

Проводя огибающую волновых

фронтов вторичных волн, получаем новый фронт волны в данный момент времени (рис. 7.1, а, б).

7.1.2. Закон отражения

Используя принцип Гюйгенса можно доказать закон отражения электромагнитных волн на границе раздела двух диэлектриков.

Угол падения равен углу отражения. Лучи, падающий и отраженный, вместе с перпендикуляром к границе раздела двух диэлектриков, лежат в

к СД называют углом падения. Если в данный момент времени фронт падающей волны ОВ достигает т. О, то согласно принципу Гюйгенса эта точка

начинает излучать вторичную волну. За время

t = ВО1 /v падающий луч 2

достигает т. О1 . За это же время фронт вторичной

волны, после отражения в т. О, распространяясь в

той же среде, достигает точек полусферы,

радиусом ОА = v

t = BO1 .Новый фронт волны

изображен плоскостью АО1 , а направление

распространения

лучом ОА. Угол называют

углом отражения. Из равенства треугольников

ОАО1 и ОВО1 следует закон отражения: угол

падения равен углу отражения.

7.1.3. Закон преломления

Оптически однородная среда 1 характеризуется абсолютным

показателем преломления

скорость света в вакууме; v1

cкорость света в первой среде.

где v2

Отношение

n2 / n1 = n21

называют относительным показателем преломления второй среды относительно первой.

частот. Если скорость распространения света в первой среде v1 , а во второй v2 ,

среде (в соответствии с принципом Гюйгенса), достигает точек полусферы, радиус которой ОВ = v2 t. Новый фронт волны, распространяемой во второй среде, изображается плоскостью ВО1 (рис. 7.3), а направление ее

распространения лучами ОВ и О1 С (перпендикулярными к фронту волны). Угол между лучом ОВ и нормалью к границе раздела двух диэлектриков в

точке О называют углом преломления. Из треугольников ОАО1

ОВО1

следует, что АО1 =ОО1 sin

OB = OO1 sin .

Их отношение и выражает закон

преломления (закон Снеллиуса):

n21 .

Отношение синуса угла падения к синусу угла

преломления

относительному

показателю преломления двух сред.

7.1.4. Полное внутреннее отражение

Согласно закону преломления на границе раздела двух сред можно

наблюдать полное внутреннее отражение , если n1 > n2 , т. е.

7.4). Следовательно, существует такой предельный угол падения

пр , когда

900 . Тогда закон преломления

принимает следующий вид:

sin пр =

(sin 900 =1)

При дальнейшем

увеличении

полностью

отражается от границы раздела двух сред.

Такое явление называют полным внутренним отражением и широко используют в оптике, например, для изменения направления световых лучей (рис. 7. 5, а, б). Применяется в телескопах, биноклях, волоконной оптике и других оптических приборах. В классических волновых процессах, таких, как явление полного внутреннего отражения электромагнитных волн,

наблюдаются явления, аналогичные туннельному эффекту в квантовой механике, что связано с корпускулярно-волновыми свойствами частиц. Действительно, при переходе света из одной среды в другую наблюдается преломление света, связанное с изменением скорости его распространения в различных средах. На границе раздела двух сред луч света разделяется на два: преломленный и отраженный. Согласно закону преломления имеем, что если n1 > n2 , то при > пр наблюдается полное внутреннее отражение.

Почему это происходит? Решение уравнений Максвелла показывает, что интенсивность света во второй среде отлична от нуля, но очень быстро, по экспоненте, затухает при удалении от

границы раздела.

Экспериментальная

наблюдению

внутреннего

отражения приведена на рис. 7.6,

демонстрирует

проникновения

света в область, «запрещенную»,

геометрической оптикой.

прямоугольной

равнобедренной стеклянной призмы перпендикулярно падает луч света и, не преломляясь падает на грань 2, наблюдается полное внутреннее отражение,

/2 от грани 2 поместить такую же призму, то луч света пройдет через грань 2* и выйдет из призмы через грань 1* параллельно лучу, падавшему на грань 1. Интенсивность J прошедшего светового потока экспоненциально убывает с увеличением промежутка h между призмами по закону:

Следовательно, проникновение света в «запрещенную» область представляет собой оптическую аналогию квантового туннельного эффекта.

Явление полного внутреннего отражения действительно является полным, так как при этом отражается вся энергия падающего света на границу раздела двух сред, чем при отражении, например, от поверхности металлических зеркал. Используя это явление можно проследить еще одну

аналогию между преломлением и отражением света, с одной стороны, и излучением Вавилова-Черенкова, с другой стороны.

7.2. ИНТЕРФЕРЕНЦИЯ ВОЛН

7.2.1. Роль векторов E и H

На практике в реальных средах могут распространяться одновременно несколько волн. В результате сложения волн наблюдается ряд интересных явлений: интерференция, дифракция, отражение и преломление волн и т. д.

Эти волновые явления характерны не только для механических волн, но и электрических, магнитных, световых и т. д. Волновые свойства проявляют и все элементарные частицы, что было доказано квантовой механикой.

Одно из интереснейших волновых явлений, которое наблюдается при распространении в среде двух и более волн, получило название интерференции. Оптически однородная среда 1 характеризуется

абсолютным показателем преломления

скорость света в вакууме; v1 cкорость света в первой среде.

Среда 2 характеризуется абсолютным показателем преломления

где v2

скорость света во второй среде.

Отношение

называют относительным показателем преломления второй среды

используя теорию Максвелла, или

где 1 , 2 диэлектрические проницаемости первой и второй сред.

Для вакуума n = 1. Из-за дисперсии (частоты света

1014 Гц), например,

для воды n =1,33, а не n = 9 (= 81), как это следует из электродинамики для малых частот. Свет электромагнитные волны. Поэтому электромагнитное

поле определяется векторами E и H , характеризующими напряженности электрического и магнитного полей cоответственно. Однако во многих процессах взаимодействия света с веществом, например, таких, как воздействие света на органы зрения, фотоэлементы и другие приборы,

определяющая роль принадлежит вектору E , который в оптике называют световым вектором.

Все процессы, происходящие в приборах под влиянием света, вызваны действием электромагнитного поля световой волны на заряженные частицы, входящие в состав атомов и молекул. В данных процессах основную роль

играют электроны из-за большой частоты

колебаний

светового

15 Гц).

действующая

на электрон со

электромагнитного поля,

F qe { E

0 },

где q e

заряд электрона; v

его скорость;

магнитная проницаемость

окружающей среды;

магнитная постоянная.

Максимальное значение модуля векторного произведения второго

слагаемого при v

H , с учетом

0 Н2 =

0 Е2 ,

получается

0 Н vэ =

vэ Е

скорости света в

веществе и в вакууме соответственно;

0 электрическая

постоянная;

диэлектрическая проницаемость вещества.

Причем v >>vэ , так как скорость света в веществе v

108 м/c, a скорость

электрона в атоме vэ

106 м/c. Известно, что

циклическая частота; Ra

10 10

размер атома, играет роль

амплитуды вынужденных колебаний электрона в атоме.

Следовательно,

F ~ qe E , и основную роль играет вектор

E , а не

вектор H . Полученные результаты хорошо согласуются с данными опытов. Например, в опытах Винера области почернения фотоэмульсии под

действием света совпадают с пучностями электрического вектора E .

7.3. Условия максимума и минимума интерференции

Явление наложения когерентных световых волн, в результате которого наблюдается чередование усиления света в одних точках пространства и ослабления в других, называют интерференцией света.

Необходимым условием интерференции света является когерентность

складываемых синусоидальных волн.

Волны называют когерентными, если не изменяется с течением времени разность фаз складываемых волн, т. е. = const .

Этому условию удовлетворяют монохроматические волны, т.е. волны

E , складываемых электромагнитных полей совершались вдоль одного и того же или близких направлений. При этом должно происходить совпадение не

только векторов E , но и H , что будет наблюдаться лишь в том случае, если волны распространяются вдоль одной и той же прямой, т.е. являются одинаково поляризованными.

Найдем условия максимума и минимума интерференции.

Для этого рассмотрим сложение двух монохроматических, когерентных световых волн одинаковой частоты (1 = 2 =), имеющих равные амплитуды (Е01 = Е02 = Е0 ), совершающих колебания в вакууме в одном направлении по закону синуса (или косинуса) , т. е.

Е01 sin(

01),

Е02 sin(

02),

где r1 , r2

расстояния от источников S1 и S2

до точки наблюдения на экране;

01, 02

начальные фазы; k =

волновое число.

Согласно принципу суперпозиции (установлен Леонардо да Винчи ) вектор напряженности результирующего колебания равен геометрической сумме векторов напряженности складываемых волн, т. е.

E 2 .

Для простоты положим, что начальные фазы складываемых волн

равны нулю, т. е. 01 =

02 = 0. По абсолютной величине, имеем

Е = Е1 + Е2 =2Е0 sin[

k(r1

k(r2

В (7.16) выражение

r1 ) n =

оптическая разность хода

складываемых волн; n

абсолютный показатель преломления среды.

Для других сред отличных от вакуума, например, для воды (n1 , 1 ),

стекла (n2 , 2 ) и т. д. k = k1 n1 ;

k = k2 n2 ;

1 n1 ;

2 n 2 ;

называют амплитудой результирующей волны.

Амплитуда мощности волны определяется (для единицы поверхности фронта волны) вектором Пойнтинга , т. е. по модулю

0 Е 0 2 cos2 [

k(r2

где П = с w,

0E 2

объемная

плотность

электромагнитного поля (для вакуума

1), т. е. П = с

0 E2 .

Если J= П

интенсивность результирующей волны, а

J0 = с

0 E 0 2

максимальная интенсивность ее, то с учетом

(7.17) и (7.18) интенсивность

результирующей волны будет изменяться по закону

J = 2J0 {1+ сos}.

Разность фаз складываемых волн

и не зависит от времени, где

2 = t kr2 +

1 = t kr1 +

Амплитуду результирующей волны найдем по формуле

K(r2

r1 )n =

Возможны два случая:

1. Условие максимума.

Если разность фаз складываемых волн равна четному числу

1, 2, ... , то результирующая амплитуда будет максимальной,

E 02 E 012 E 022 2E 01E 02

Е0 = Е01 + Е02 .

Следовательно, амплитуды волн складываются,

а при их равенстве

(Е01 = Е02 )

результирующая амплитуда удваивается.

Результирующая интенсивность также максимальна:

Jmax = 4J0 .

Введение.................................................................................................................................. 2

Глава 1. Основные законы оптических явлений...................................... 4

1.1 Закон прямолинейного распространения света....................................................... 4

1.2 Закон независимости световых пучков................................................................... 5

1.3 Закон отражения света................................................................................................. 5

1.4 Закон преломления света............................................................................................. 5

Глава 2. Идеальные оптические системы..................................................... 7

Глава 3. Составляющие оптических систем.............................................. 9

3.1 Диафрагмы и их роль в оптических системах............................................................ 9

3.2 Входной и выходной зрачки......................................................................................... 10

Глава 4. Современные оптические системы............................................. 12

4.1 Оптическая система...................................................................................................... 12

4.2 Фотографический аппарат............................................................................................ 13

4.3 Глаз как оптическая система..................................................................................... 13

Глава 5. Оптические системы, вооружающие глаз.............................. 16

5.1 Лупа.................................................................................................................................... 17

5.2 Микроскоп........................................................................................................................ 18

5.3 Зрительные трубы............................................................................................................ 20

5.4 Проекционные устройства........................................................................................... 21

5.5 Спектральные аппараты................................................................................................ 22

5.6 Оптический измерительный прибор............................................................................ 23

Заключение......................................................................................................................... 28

Список литературы....................................................................................................... 29

Введение.

Оптика - раздел физики, в котором изучается природа оптического излучения (света), его распространение и явления, наблюдаемые при взаимодействии света и вещества. Оптическое излучение представляет собой электромагнитные волны, и поэтому оптика - часть общего учения об электромагнитном поле.

Оптика - это учение о физических явлениях, связанных с распространением коротких электромагнитных волн, длина которых составляет приблизительно 10 -5 -10 -7 м. Значение именно этой области спектра электромагнитных волн связано с тем, что внутри нее в узком интервале длин волн от 400-760 нм лежит участок видимого света, непосредственно воспринимаемого человеческим глазом. Он ограничен с одной стороны рентгеновскими лучами, а с другой - микроволновым диапазоном радиоизлучения. С точки зрения физики происходящих процессов выделение столь узкого спектра электромагнитных волн (видимого света) не имеет особого смысла, поэтому в понятие "оптический диапазон" включает обычно ещё и инфракрасное и ультрафиолетовое излучение.

Ограничение оптического диапазона условно и в значительной степени определяется общностью технических средств и методов исследования явлений в указанном диапазоне. Для этих средств и методов характерны основанные на волновых свойствах излучения формирование изображений оптических предметов с помощью приборов, линейные размеры которых много больше длины λ излучения, а так же использование приёмников света, действие которых основано на его квантовых свойствах.

По традиции оптику принято подразделять на геометрическую, физическую и физиологическую. Геометрическая оптика оставляет вопрос о природе света, исходит из эмпирических законов его распространения и использует представление о световых лучах, преломляющихся и отражающихся на границах сред с разными оптическими свойствами и прямолинейных в оптически однородной среде. Её задача - математически исследовать ход световых лучей в среде с известной зависимостью показателя преломления n от координат либо, напротив, найти оптические свойства и форму прозрачных и отражающих сред, при которых лучи происходят по заданному пути. Наибольшее значение геометрической оптики имеет для расчёта и конструирования оптических приборов - от очковых линз до сложных объективов и огромных астрономических инструментов.

Физическая оптика рассматривает проблемы, связанные с природой света и световых явлений. Утверждение, что свет есть поперечные электромагнитные волны, основано на результатах огромного числа экспериментальных исследований дифракции света, интерференции, поляризации света и распространения в анизотропных средах.

Одна из важнейших традиционных задач оптики - получение изображений, соответствующих оригиналам как по геометрической форме, так и по распределению яркости решается главным образом геометрической оптикой с привлечением физической оптики. Геометрическая оптика дает ответ на вопрос, как следует строить оптическую систему для того, чтобы каждая точка объекта изображалась бы также в виде точки при сохранении геометрического подобия изображения объекту. Она указывает на источники искажений изображения и их уровень в реальных оптических системах. Для построения оптических систем существенна технология изготовления оптических материалов с требуемыми свойствами, а также технологию обработки оптических элементов. Из технологических соображений чаще всего применяют линзы и зеркала со сферическими поверхностями, но для упрощения оптических систем и повышения качества изображений при высокой светосиле используют оптические элементы.

Глава 1. Основные законы оптических явлений.

Уже в первые периоды оптических исследований были на опыте установлены следующие четыре основных закона оптических явлений:

1. Закон прямолинейного распространения света.

2. Закон независимости световых пучков.

3. Закон отражения от зеркальной поверхности.

4. Закон преломления света на границе двух прозрачных сред.

Дальнейшее изучение этих законов показало, во-первых, что они имеют гораздо более глубокий смысл, чем может казаться с первого взгляда, и во-вторых, что их применение ограничено, и они являются лишь приближёнными законами. Установление условий и границ применимости основных оптических законов означало важный прогресс в исследовании природы света.

Сущность этих законов сводится к следующему.

В однородной среде свет распространяется по прямым линиям.

Закон этот встречается в сочинениях по оптике, приписываемых Евклиду и, вероятно, был известен и применялся гораздо раньше.

Опытным доказательством этого закона могут служить наблюдения над резкими тенями, даваемыми точечными источниками света, или получение изображений при помощи малых отверстий. Рис. 1 иллюстрирует получение изображения при помощи малого отверстия, причем форма и размер изображения показывают, что проектирование происходит при помощи прямолинейных лучей.

Рис.1 Прямолинейное распространение света: получение изображения с помощью малого отверстия.

Закон прямолинейного распространения может считаться прочно установленном на опыте. Он имеет весьма глубокий смысл, ибо само понятие о прямой линии, по-видимому возникло из оптических наблюдений. Геометрическое понятие прямой как линии, представляющей кратчайшее расстояние между двумя точками, есть понятие о линии, по которой распространяется свет в однородной среде.

Более детальное исследование описываемых явлений показывает, что закон прямолинейного распространения света теряет силу, если мы переходим к очень малым отверстиям.

Так, в опыте, изображенном на рис. 1, мы получим хорошее изображение при размере отверстия около 0,5 мм. При последующем уменьшении отверстия - изображение будет несовершенным, а при отверстии около 0,5-0,1 мкм изображение совсем не получится и экран будет освещён практически равномерно.

Световой поток можно разбить на отдельные световые пучки, выделяя их, например, при помощи диафрагм. Действие этих выделенных световых пучков оказывается независимым, т.е. эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно другие пучки или они устранены.

Луч падающий, нормаль к отражающей поверхности и луч отраженный лежат в одной плоскости (рис. 2), причем углы между лучами и нормалью равны между собой: угол падения i равен углу отражения i". Этот закон также упоминается в сочинениях Евклида. Установление его связано с употреблением полированных металлических поверхностей (зеркал), известных уже в очень отдаленную эпоху.

Рис. 2 Закон отражения.

Рис. 3 Закон преломления.

Диафрагма – непрозрачная преграда, ограничивающая поперечное сечение световых пучков в оптических системах (в телескопах, дальномерах, микроскопах, кино- и фотоаппаратах и т.д.). роль диафрагм часто играют оправы линз, призм, зеркал, и других оптических деталей, зрачок глаза, границы освещенного предмета, в спектроскопах – щели.

Любая оптическая система – глаз вооруженный и невооруженный, фотографический аппарат, проекционный аппарат – в конечном счете рисует изображение на плоскости (экран, фотопластинка, сетчатка глаза); объекты же в большинстве случаев трёхмерны. Однако даже идеальная оптическая система, не будучи ограниченной, не давала бы изображений трехмерного объекта на плоскости. Действительно, отдельные точки трехмерного объекта находятся на различных расстояниях от оптической системы, и им соответствуют различные сопряженные плоскости.

Светящаяся точка О (рис. 5) дает резкое изображение О` в плоскости ММ 1 сопряженной с ЕЕ. Но точки А и В дают резкие изображения в A` и B`, а в плоскости ММ проектируются светлыми кружками, размер которых зависит от ограничения ширины пучков. Если бы система не была ничем не ограниченна, то пучки от А и В освещали бы плоскость ММ равномерно, от есть не получилось бы никакого изображения предмета, а лишь изображение отдельных точек его, лежащих в плоскости ЕЕ.

Чем уже пучки тем, тем отчетливее изображение пространства предмета на плоскости. Точнее, на плоскости изображается не сам пространственный предмет, а та плоская картина, которая является проекцией предмета на некоторую плоскость ЕЕ (плоскость установки), сопряженную относительно системы с плоскостью изображения ММ. Центром проекции служит одна из точек системы (центр входного зрачка оптического инструмента).

Размеры и положение диафрагмы определяют освещенность и качество изображения, глубину резкости и разрешающую способность оптической системы, поле зрения.

Диафрагма наиболее сильно ограничивающая световой пучок, называется апертурной или действующей. Её роль может выполнять оправа какой-либо линзы или специальная диафрагма ВВ, если эта диафрагма сильнее ограничивает пучки света, чем оправы линз.

Рис. 6. ВВ – апертурная диафрагма; В 1 В 1 – входной зрачок; В 2 В 2 – выходной зрачок.

Апертурная диафрагма ВВ нередко располагается между отдельными компонентами (линзами) сложной оптической системы (рис.6), но её можно поместить и перед системой или после её.

Если ВВ - действительная апертурная диафрагма (рис. 6) ,а В 1 В 1 и В 2 В 2 - её изображения в передней и задней частях системы, то все лучи, прошедшие через ВВ, пройдут через В 1 В 1 и В 2 В 2 и на оборот, т.е. любая из диафрагм ВВ, В 1 В 1 , В 2 В 2 ограничивает активные пучки.

Входным зрачком называется то из действительных отверстий или их изображений, которое сильнее всего ограничивает входящий пучок, т.е. видно под наименьшим углом из точки пересечения оптической оси с плоскостью предмета.

Выходным зрачком называется отверстие или его изображение, ограничивающее выходящий из системы пучок. Входной и выходной зрачки являются сопряженными по отношению ко всей системе.

Роль входного зрачка может играть то или иное отверстие или его изображение (действительное или мнимое). В некоторых важных случаях изображаемый предмет есть освещенное отверстие (например, щель спектрографа), причем освещение обеспечивается непосредственно источником света, расположенным недалеко от отверстия, или при помощи вспомогательного конденсора. В таком случае в зависимости от расположения роль входного зрачка может играть граница источника или его изображения, или граница конденсора и т.д.

Если апертурная диафрагма лежит перед системой, то она совпадает с входным зрачком, а выходным зрачком явится её изображение в этой системе. Если она лежит сзади системы, то она совпадает с выходными зрачком, а входным зрачком явится её изображение в системе. Если апертурная диафрагма ВВ лежит внутри системы (рис. 6) , то её изображение В 1 В 1 в передней части системы служит входным зрачком, а изображение В 2 В 2 в задней части системы – выходным. Угол, под которым виден радиус входного зрачка из точки пересечения оси с плоскостью предмета, называется «апертурным углом», а угол, под которым виден радиус выходного зрачка из точки пересечения оси с плоскостью изображения, есть угол проекции или выходной апертурный угол. [ 3 ]

Глава 4. Современные оптические системы.

Тонкая линза представляет простейшую оптическую систему. Простые тонкие линзы применяются главным образом в виде стекол для очков. Кроме того, общеизвестно применение линзы в качестве увеличительного стекла.

Действие многих оптических приборов – проекционного фонаря, фотоаппарата и других приборов - может быть схематически уподоблено действию тонких линз. Однако тонкая линза дает хорошее изображение только в том сравнительно редком случае, когда можно ограничиться узким одноцветным пучком, идущим от источника вдоль главной оптической оси или под большим углом к ней. В большинстве же практических задач, где эти условия не выполняются, изображение, даваемое тонкой линзой, довольно не совершенно. Поэтому в большинстве случаев прибегают к построению более сложных оптических систем, имеющих большое число преломляющих поверхностей и не ограниченных требованием близости этих поверхностей (требование, которому удовлетворяет тонкая линза). [ 4 ]

В целом глаз человека - это шарообразное тело диаметром око­ло 2,5 см, которое называют глазным яблоком (рис.10). Непрозрачную и прочную внешнюю оболочку глаза называют склерой, а ее прозрачную и более выпуклую переднюю часть - роговицей. С внутренней стороны склера покрыта сосудистойоболочкой, состоящей из кровеносных сосудов, питающих глаз. Против ро­говицы сосудистая оболоч­ка переходит в радуж­ную оболочку, неодинаково окрашенную у различных людей, которая отделена от роговицы каме­рой с прозрачной водяни­стой массой.

В радужной оболочке имеется круглое отверстие,

называемое зрачком, диаметр которого может из­меняться. Таким образом, радужная оболочка играет роль диафрагмы, регулирующей доступ света в глаз. При ярком освещении зрачок уменьшается, а при сла­бом освещении - увеличивается. Внутри глазного яблока за ра­дужной оболочкой расположен хрусталик, который представ­ляет собой двояковыпуклую линзу из прозрачного вещества с показателем преломления около 1,4. Хрусталик окаймляет кольце­вая мышца, которая может изменять кривизну его поверхностей, а значит, и его оптическую силу.

Сосудистая оболочка с внутренней стороны глаза покрыта разветвлениями светочувствительного нерва, особенно густыми напротив зрачка. Эти разветвления образуют сетчатую оболочку, на которой получается действительное изображение предметов, создаваемое оптической системой глаза. Пространство между сетчаткой и хрусталиком заполнено прозрачным стекловидным телом, имеющим студенистое строение. Изображение предметов на сетчатке глаза получается перевернутое. Однако деятельность мозга, получающего сигналы от светочувствительного нерва, позволяет нам видеть все предметы в натуральных положениях.

Когда кольцевая мышца глаза расслаблена, то изображение далеких предметов получается на сетчатке. вообще устройство глаза таково, что человек может видеть без напряжения предметы, расположенные не ближе 6 м от глаза. Изображение более близких предметов в этом случае получается за сетчаткой глаза. Для получения отчетливого изображения такого предмета кольцевая мышца сжимает хрусталик всё сильнее до тех пор, пока изображение предмета не окажется на сетчатке, а затем удерживает хрусталик в сжатом состоянии.

Таким образом, «наводка на фокус» глаза человека осуществляется изменением оптической силы хрусталика с помощью кольцевой мышцы. Способность оптической системы глаза создавать отчетливые изображения предметов, находящих на различных расстояниях от него, называют аккомодацией (от латинского «аккомодацио» – приспособление). При рассматривании очень далёких предметов в глаз попадают параллельные лучи. В этом случае говорят, что глаз аккомодирован на бесконечность.

Аккомодация глаза не бесконечна. С помощью кольцевой мышцы оптическая сила глаза может увеличиваться не больше чем на 12 диоптрий. При долгом рассматривании близких предметов глаз устает, а кольцевая мышца начинает расслабляться и изображение предмета расплывается.

Глаза человека позволяют хорошо видеть предметы не только при дневном освещении. Способность глаза приспосабливаться к различной степени раздражения окончаний светочувствительного нерва на сетчатке глаза, т.е. к различной степени яркости наблюдаемых объектов называют адаптацией.

Сведение зрительных осей глаз на определенной точке называется конвергенцией. Когда предметы расположены на значительном расстоянии от человека, то при пере воде глаз с одного предмета на другой между осями глаз практически не изменяется, и человек теряет способность правильно определять положение предмета. Когда предметы находятся очень далеко, то оси глаз располагаются параллельно, и человек не может даже определить, движется предмет или нет, на который он смотрит. Некоторую роль в определении положения тел играет и усилие кольцевой мышцы, которая сжимает хрусталик при рассматривании предметов, расположенных недалеко от человека. [ 2 ]

Глава 5. Оптические системы, вооружающие глаз.

Хотя глаз и не представляет собой тонкую линзу, в нем можно все же найти точку, через которую лучи проходят практически без преломления, т.е. точку, играющую роль оптического центра. Оптический центр глаза находится внутри хрусталика вблизи задней поверхности его. Расстояние h от оптического центра до сетчатой оболочки, называемое глубиной глаза, составляет для нормального глаза 15 мм.

Зная положение оптического центра, можно легко построить изображение какого-либо предмета на сетчатой оболочке глаза. Изображение всегда действительное, уменьшенное и обратное (рис.11,а). Угол φ , под которым виден предмет S 1 S 2 из оптического центра О, называется углом зрения.

Сетчатая оболочка имеет сложное строение и состоит из отдельных светочувствительных элементов. Поэтому две точки объекта, расположенные настолько близко друг к другу, что их изображение на сетчатке попадают в один и тот же элемент, воспринимаются глазом, как одна точка. Минимальный угол зрения, под которым две светящихся точки или две черные точки на белом фоне воспринимаются глазом ещё раздельно, составляет приблизительно одну минуту. Глаз плохо распознает детали предмета, которые он видит под углом менее 1". Это угол, под которым виден отрезок, длина которого 1 см на расстоянии 34 см от глаза. При плохом освещении (в сумерках) минимальный угол разрешения повышается и может дойти до 1º.


Приближая предмет к глазу, мы увеличиваем угол зрения и, следовательно, получаем

возможность лучше различать мелкие детали. Однако очень близко к глазу приблизить мы не можем, так как способность глаза к аккомодации ограничена. Для нормального глаза наиболее благоприятным для рассматривания предмета оказывается расстояние около 25 см, при котором глаз достаточно хорошо различает детали без чрезмерного утомления. Это расстояние называется расстоянием наилучшего зрения. для близорукого глаза это расстояние несколько меньше. поэтому близорукие люди, помещая рассматриваемый предмет ближе к глазу, чем люди с нормальным зрением или дальнозоркие, видят его под большим углом зрения и могут лучше различать мелкие детали.

Значительное увеличение угла зрения достигается с помощью оптических приборов. По своему назначению оптические приборы, вооружающие глаз, можно разбить на следующие большие группы.

1. Приборы, служащие для рассматривания очень мелких предметов (лупа, микроскоп). Эти приборы как бы «увеличивают» рассматриваемые предметы.

2. Приборы, предназначенные для рассматривания удаленных объектов (зрительная труба, бинокль, телескоп и т.п.) . эти приборы как бы «приближают» рассматриваемые предметы.

Благодаря увеличению угла зрения при использовании оптического прибора размер изображения предмета на сетчатке увеличивается по сравнению с изображением в невооруженном глазе и, следовательно, возрастает способность распознавания деталей. Отношение длины b на сетчатке в случае вооруженного глаза b" к длине изображения для невооруженного глаза b (рис.11,б) называется увеличением оптического прибора.

С помощью рис. 11,б легко видеть, что увеличение N равно также отношению угла зрения φ" при рассматривании предмета через инструмент к углу зрения φ для невооруженного глаза, ибо φ" и φ невелики. [ 2,3 ] Итак,

N = b" / b = φ" / φ ,

где N – увеличение предмета;

b" – длина изображения на сетчатке для вооруженного глаза;

b - длина изображения на сетчатке для невооруженного глаза;

φ" – угол зрения при рассматривании предмета через оптический инструмент;

φ – угол зрения при рассматривании предмета невооруженным глазом.

Одним из простейших оптических приборов является лупа – собирающая линза, предназначенная для рассматривания увеличенных изображений малых объектов. Линзу подносят к самому глазу, а предмет помещают между линзой и главным фокусом. Глаз увидит мнимое и увеличенное изображение предмета. Удобнее всего рассматривать предмет через лупу совершенно ненапряженным глазом, аккомодированным на бесконечность. Для этого предмет помещают в главной фокальной плоскости линзы так, что лучи, выходящие из каждой точки предмета, образуют за линзой параллельные пучки. На рис. 12 изображено два таких пучка, идущих от краев предмета. Попадая в аккомодированный на бесконечность глаз, пучки параллельных лучей фокусируются на ретине и дают здесь отчетливое изображение предмета.



Угловое увеличение. Глаз находится очень близко к линзе, поэтому за угол зрения можно принять угол 2γ , образованный лучами, идущими от краев предмета через оптический центр линзы. Если бы лупы не было, нам пришлось бы поставить предмет на расстоянии наилучшего зрения (25 см) от глаза и угол зрения был бы равен 2β . Рассматривая прямоугольные треугольники с катетами 25 см и F см и обозначая половину предмета Z , можем написать:

,

где 2γ – угол зрения, при наблюдении через лупу;

2β - угол зрения, при наблюдении невооруженным глазом;

F – расстояние от предмета до лупы;

Z – половина длины рассматриваемого предмета.

Принимая во внимание, что через лупу рассматривают обычно мелкие детали и поэтому углы γ и β малы, можно тангенсы заменить углами. Таким образом получится следующее выражение для увеличения лупы = = .

Следовательно, увеличение лупы пропорционально 1 / F , то есть её оптической силе.

Прибор, позволяющий получить большое увеличение при рассматривании малых предметов, называется микроскопом.

Простейший микроскоп состоит из двух собирающих линз. Очень короткофокусный объектив L 1 даёт сильно увеличенное действительное изображение предмета P"Q" (рис. 13), которое рассматривается окуляром, как лупой.



Обозначим линейное увеличение, даваемое объективом, через n 1 , а окуляром через n 2 , это значит, что = n 1 и = n 2 ,

где P"Q" – увеличенное действительное изображение предмета;

PQ – размер предмета;

Перемножив эти выражения, получим = n 1 n 2 ,

где PQ – размер предмета;

P""Q"" - увеличенное мнимое изображение предмета;

n 1 – линейное увеличение объектива;

n 2 – линейное увеличение окуляра.

Отсюда видно, что увеличение микроскопа равно произведению увеличений, даваемых объективом и окуляром в отдельности. Поэтому возможно построить инструменты, дающие очень большие увеличения – до 1000 и даже больше. В хороших микроскопах объектив и окуляр - сложные.

Окуляр обычно состоит из двух линз объектив же гораздо сложнее. Желание получить большие увеличения заставляют употреблять короткофокусные линзы с очень большой оптической силой. Рассматриваемый объект ставится очень близко от объектива и дает широкий пучок лучей, заполняющий всю поверхность первой линзы. Таким образом, создаются очень невыгодные условия для получения резкого изображения: толстые линзы и нецентральные лучи. Поэтому для исправления всевозможных недостатков приходится прибегать к комбинациям из многих линз различных сортов стекла.

В современных микроскопах теоретический предел уже почти достигнут. Видеть в микроскоп можно и очень малые объекты, но их изображения представляются в виде маленьких пятнышек, не имеющих никакого сходства с объектом.

При рассматривании таких маленьких частиц пользуются так называемым ультрамикроскопом, который представляет собой обычный микроскоп с конденсором, дающим возможность интенсивно освещать рассматриваемый объект сбоку, перпендикулярно оси микроскопа.

С помощью ультрамикроскопа удаётся обнаружить частицы, размер которых не превышает миллимикронов.

Простейшая зрительная труба состоит из двух собирающих линз. Одна линза, обращенная к рассматриваемому предмету, называется объективом, а другая, обращенная к глазу наблюдателя - окуляром.


Объектив L 1 дает действительное обратное и сильно уменьшенное изображение предмета P 1 Q 1 , лежащее около главного фокуса объектива. Окуляр помещают так, чтобы изображение предмета находилось в его главном фокусе. В этом положении окуляр играет роль лупы, при помощи которой рассматривается действительное изображение предмета.


Действие трубы, так же как и лупы, сводится к увеличению угла зрения. При помощи трубы обычно рассматривают предметы, находящиеся на расстояниях, во много раз превышающих её длину. Поэтому угол зрения, под которым предмет виден без трубы, можно принять угол 2β , образованный лучами, идущими от краев предмета через оптический центр объектива.

Изображение видно под углом 2γ и лежит почти в самом фокусе F объектива и в фокусе F 1 окуляра.

Рассматривая два прямоугольных треугольника с общим катетом Z" , можем написать:

,

F - фокус объектива;

F 1 - фокус окуляра;

Z" - половина длины рассматриваемого предмета.

Углы β и γ -не велики, поэтому можно с достаточным приближением заменить tgβ и tgγ углами и тогда увеличение трубы = ,

где 2γ - угол под которым видно изображение предмета;

2β - угол зрения, под которым виден предмет невооруженным глазом;

F - фокус объектива;

F 1 - фокус окуляра.

Угловое увеличение трубы определяется отношением фокусного расстояния объектива к фокусному расстоянию окуляра. Чтобы получить большое увеличение, надо брать длиннофокусный объектив и короткофокусный окуляр. [ 1 ]

Для показа зрителям на экране увеличенного изображения рисунков, фотоснимков или чертежей применяют проекционный аппарат. Рисунок на стекле или на прозрачной пленке называют диапозитивом, а сам аппарат, предназначенный для показа таких рисунков, - диаскопом. Если аппарат предназначен для показа непрозрачных картин и чертежей, то его называют эпископом. Аппарат, предназначенный для обоих случаев называется эпидиаскопом.

Линзу, которая создает изображение находящегося перед ней предмета, называют объективом. Обычно объектив представляет собой оптическую систему, у которой устранены важнейшие недостатки, свойственные отдельным линзам. Чтобы изображение предмета на было хорошо видно зрителям, сам предмет должен быть ярко освещен.

Схема устройства проекционного аппарата показана на рис.16.

Источник света S помещается в центре вогнутого зеркала (рефлектора) Р. свет идущий непосредственно от источника S и отраженный от рефлектора Р, попадает на конденсор К, который состоит из двух плосковыпуклых линз. Конденсор собирает эти световые лучи на


В трубе А, называемой коллиматором имеется узкая щель, ширину которой можно регулировать поворотом винта. Перед щелью помещается источник света, спектр которого необходимо исследовать. Щель располагается в фокальной плоскости коллиматора, и поэтому световые лучи из коллиматора выходят в виде параллельного пучка. Пройдя через призму, световые лучи направляются в трубу В, через которую наблюдают спектр. Если спектроскоп предназначен для измерений, то на изображение спектра с помощью специального устройства накладывается изображение шкалы с делениями, что позволяет точно установить положение цветовых линий в спектре.

При исследовании спектра часто бывает целесообразней сфотографировать его, а затем изучать с помощью микроскопа.

Прибор для фотографирования спектров называется спектрографом.

Схема спектрографа показана на рис. 18.

Спектр излучения с помощью линзы Л 2 фокусируется на матовое стекло АВ, которое при фотографировании заменяют фотопластинкой. [ 2 ]


Оптический измерительный прибор - средство измерения, в котором визирование (совмещение границ контролируемого предмета с визирной линией, перекрестием и т.п.) или определение размера осуществляется с помощью устройства с оптическим принципом действия. Различают три группы оптических измерительных приборов: приборы с оптическим принципом визирования и механическим способом отчета перемещения; приборы с оптическим способом визирования и отчета перемещения; приборы, имеющие механический контакт с измерительным прибором, с оптическим способом определения перемещения точек контакта.

Из приборов первой распространение получили проекторы для измерения и контроля деталей, имеющих сложный контур, небольшие размеры.

Наиболее распространенный прибор второй - универсальный измерительный микроскоп, в котором измеряемая деталь перемещается на продольной каретке, а головной микроскоп - на поперечной.

Приборы третьей группы применяют для сравнения измеряемых линейных величин с мерками или шкалами. Их объединяют обычно под общим названием компараторы. К этой группе приборов относятся оптиметр (оптикатор, измерительная машина, контактный интерферометр, оптический дальномер и др.).

Оптические измерительные приборы также широко распространены в геодезии (нивелир, теодолит и др.).

Теодолит - геодезический инструмент для определения направлений и измерения горизонтальных и вертикальных углов при геодезических работах, топографической и маркшейдерских съемках, в строительстве и т.п.

Нивелир - геодезический инструмент для измерения превышений точек земной поверхности - нивелирования, а также для задания горизонтальных направлений при монтажных и т.п. работах.

В навигации широко распространён секстант - угломерный зеркально-отражательный инструмент для измерения высот небесных светил над горизонтом или углов между видимыми предметами с целью определения координат места наблюдателя. Важнейшая особенность секстанта - возможность совмещения в поле зрения наблюдателя одновременно двух предметов, между которыми измеряется угол, что позволяет пользоваться секстантом на самолёте и на корабле без заметного снижения точности даже во время качки.

Перспективным направлением в разработке новых типов оптических измерительных приборов является оснащение их электронными отсчитывающими устройствами, позволяющими упростить отсчет показаний и визирования, и т.п. [ 5 ]


Глава 6. Применение оптических систем в науке и технике.

Применение, а так же роль оптических систем в науке и технике очень велико. Не изучая оптические явления и не развивая оптические инструменты человечество не было бы на столь высоком уровне развития техники.

Почти все современные оптические приборы предназначены для непосредственного визуального наблюдения оптических явлений.

Законы построения изображения служат основой для построения разнообразных оптических приборов. Основной частью любого оптического прибора является некоторая оптическая система. В одних оптических приборах изображение получается на экране, другие приборы предназначены для работы с глазом. в последнем случае прибор и глаз представляют как бы единую оптическую систему и изображение получается на сетчатой оболочке глаза.

Изучая некоторые химические свойства веществ, ученые изобрели способ закрепления изображения на твердых поверхностях, а для проецирования изображений на эту поверхность стали использовать оптические системы, состоящие из линз. Таким образом, мир получил фото- и киноаппараты, а с последующим развитием электроники появились видео- и цифровые камеры.

Для исследования малых объектов, практически незаметных глазу используют лупу, а если её увеличения не достаточно, тогда применяют микроскопы. Современные оптические микроскопы позволяют увеличивать изображение до 1000 раз, а электронные микроскопы в десятки тысяч раз. Это даёт возможность исследовать объекты на молекулярном уровне.

Современные астрономические исследования не были бы возможными без «трубы Галилея» и «трубы Кеплера». Труба Галилея, нередко применяемая в обычном театральном бинокле, даёт прямое изображение предмета, труба Кеплера - перевернутое. Вследствие этого, если труба Кеплера должна служить для земных наблюдений, то её снабжают оборачивающей системой (дополнительной линзой или системой призм) , в результате чего изображение становится прямым. Примером подобного прибора может служить призменный бинокль.

Преимуществом трубы Кеплера является то, что в ней имеется дополнительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу, фотопластинку для производства снимков и т.п. Вследствие этого в астрономии и во всех случаях, связанных с измерениями, применяется труба Кеплера.

Наряду с телескопами, построенными по типу зрительной трубы - рефракторами, весьма важное значение в астрономии имеют зеркальные (отражательные) телескопы, или рефлекторы.

Возможности наблюдения, которые даёт каждыё телескоп, определяются диаметром его отверстия. Поэтому с давних времен научно техническая мысль направлена на отыскание



способов изготовления больших зеркал и объективов.

С постройкой каждого нового телескопа расширяется радиус наблюдаемой нами Вселенной.

Зрительное восприятие внешнего пространства является сложным действием, в котором существенным обстоятельством является то, что в нормальных условиях мы пользуемся двумя глазами. Благодаря большой подвижности глаз мы быстро фиксируем одну точку предмета за другой; при этом мы можем оценивать расстояние до рассматриваемых предметов, а также сравнивать эти расстояния между собой. Такая оценка даёт представление о глубине пространства, об объемном распределении деталей предмета, делает возможным стереоскопическое зрение.

Стереоскопические снимки 1 и 2 рассматриваются с помощью линз L 1 и L 2 , помещенных каждая перед одним глазом. Снимки располагаются в фокальных плоскостях линз, и следовательно, их изображения лежат в бесконечности. Оба глаза аккомодированы на бесконечность. Изображения обоих снимков воспринимаются как один рельефный предмет, лежащий в плоскости S.

Стереоскоп в настоящее время широко применяется для изучения снимков местности. Производя фотографирование местности с двух точек, получают два снимка, рассматривая которые в стереоскоп можно ясно видеть рельеф местности. Большая острота стереоскопического зрения даёт возможность применять стереоскоп для обнаружения подделок документов, денег и т.п.

В военных оптических приборах, предназначенных для наблюдений (бинокли, стереотрубы), расстояния между центрами объективов всегда значительно больше, чем расстояние между глазами, и удаленные предметы кажутся значительно более рельефными, чем при наблюдении без прибора.

Изучение свойств света, идущего в телах с большим показателем преломления привело к открытию полного внутреннего отражения. Это свойство широко применяется при изготовлении и использовании оптоволокна. Оптическое волокно позволяет проводить любое оптическое излучение без потерь. Использование оптоволокна в системах связи позволило получить высокоскоростные каналы для получения и отправки информации.

Полное внутреннее отражение позволяет использовать призмы вместо зеркал. На этом принципе построены призматические бинокли и перископы.



Использование лазеров и систем фокусоровки позволяет фокусировать лазерное излучение в одной точке, что применяется в резке различных веществ, в устройствах для чтения и записи компакт-дисков, в лазерных дальномерах.

Оптические системы широко распространены в геодезии для измерения углов и превышений (нивелиры, теодолиты, секстанты и др.).

Использование призм для разложения белого света на спектры привело к созданию спектрографов и спектроскопов. Они позволяют наблюдать спектры поглощений и испусканий твердых тел и газов. Спектральный анализ позволяет узнать химический состав вещества.

Использование простейших оптических систем – тонких линз, позволило многим людям с дефектами зрительной системы нормально видеть (очки, глазные линзы и т.д.).

Благодаря оптическим системам было произведено много научных открытий и достиженй.

Оптические системы используются во всех сферах научной деятельности, от биологии до физики. Поэтому, можно сказать, что сфера применения оптических систем в науке и технике – безгранична. [ 4,6 ]

Заключение.

Практическое значение оптики и её влияние на другие отрасли знания исключительно велики. Изобретение телескопа и спектроскопа открыло перед человеком удивительнейший и богатейший мир явлений, происходящих в необъятной Вселенной. Изобретение микроскопа произвело революцию в биологии. Фотография помогла и продолжает помогать чуть ли не всем отраслям науки. Одним из важнейших элементов научной аппаратуры является линза. Без неё не было бы микроскопа, телескопа, спектроскопа, фотоаппарата, кино, телевидения и т.п. не было бы очков, и многие люди, которым перевалило за 50 лет, были бы лишены возможности читать и выполнять многие работы, связанные со зрением.

Область явлений, изучаемая физической оптикой, весьма обширна. Оптические явления теснейшим образом связаны с явлениями, изучаемыми в других разделах физики, а оптические методы исследования относятся к наиболее тонким и точным. Поэтому неудивительно, что оптике на протяжении длительного времени принадлежала ведущая роль в очень многих фундаментальных исследованиях и развитии основных физических воззрений. Достаточно сказать, что обе основные физические теории прошлого столетия - теория относительности и теория квантов - зародились и в значительной степени развились на почве оптических исследований. Изобретение лазеров открыло новые широчайшие возможности не только в оптике, но и в её приложениях в различных отраслях науки и техники.

Список литературы.

1. Арцыбышев С.А. Физика - М.: Медгиз, 1950. - 511с.

2. Жданов Л.С. Жданов Г.Л. Физика для средних учебных заведений - М.: Наука, 1981. - 560с.

3. Ландсберг Г.С. Оптика - М.: Наука, 1976. - 928с.

4. Ландсберг Г.С. Элементарный учебник физики. - М.: Наука, 1986. - Т.3. - 656с.

5. Прохоров А.М. Большая советская энциклопедия. - М.: Советская энциклопедия, 1974. - Т.18. - 632с.

6. Сивухин Д.В. Общий курс физики: Оптика - М.: Наука, 1980. - 751с.

Геометрическая оптика – предельно простой случай оптики. По сути, это упрощенная версия волновой оптики, которая не рассматривает и просто не предполагает таких явлений, как интерференция и дифракция. Тут все упрощено до предела. И это хорошо.

Основные понятия

Геометрическая оптика – раздел оптики, в котором рассматриваются законы распространения света в прозрачных средах, законы отражения света от зеркальных поверхностей, принципы построения изображений при прохождении света через оптические системы.

Важно! Все эти процессы рассматриваются без учета волновых свойств света!

В жизни геометрическая оптика, являясь крайне упрощенной моделью, тем не менее, находит широкое применение. Это как классическая механика и теория относительности. Произвести нужный расчет чаще всего гораздо легче в рамках классической механики.

Основное понятие геометрической оптики – световой луч .

Отметим, что реальный световой пучок не распространяется вдоль линии, а имеет конечное угловое распределение, которое зависит от поперечного размера пучка. Геометрическая оптика пренебрегает поперечными размерами пучка.

Закон прямолинейного распространения света

Этот закон говорит нам о том, что в однородной среде свет распространяется прямолинейно. Иными словами, из точки А в точку Б свет движется по тому пути, который требует минимального времени на преодоление.

Закон независимости световых лучей

Распространение световых лучей происходит независимо друг от друга. Что это значит? Это значит, что геометрическая оптика предполагает, что лучи не влияют друг на друга. И распространяются так, будто других лучей и вовсе нет.

Закон отражения света

Когда свет встречается с зеркальной (отражающей) поверхностью, происходит отражение, то есть изменение направления распространения светового луча. Так вот, закон отражения гласит, что падающий и отраженный луч лежат в одной плоскости вместе с проведенной к точке падения нормалью. Причем угол падения равен углу отражения, т.е. нормаль делит угол между лучами на две равные части.

Закон преломления (Снеллиуса)

На границе раздела сред наряду с отражением происходит и преломление, т.е. луч разделяется на отраженный и преломленный.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы .


Отношение синусов углов падения и преломления является постоянной величиной и равняется отношению показателей преломления этих сред. Еще эта величина называется показателем преломления второй среды относительно первой.

Здесь стоит отдельно рассмотреть случай полного внутреннего отражения. При распространении света из оптически более плотной среды в менее плотную угол преломления по величине больше угла падения. Соответственно, при увеличении угла падения будет увеличиваться и угол преломления. При некотором предельном угле падения угол преломления станет равным 90 градусов. При дальнейшем увеличении угла падения свет не будет преломляться во вторую среду, а интенсивность падающего и отраженного лучей будут равны. Это называется полным внутренним отражением.

Закон обратимости световых лучей

Представим, что луч, распространяясь в каком-то направлении, претерпел ряд изменений и преломлений. Закон обратимости световых лучей гласит, что если пустить навстречу этому лучу другой луч, то он пойдет по тому же пути, что и первый, но в обратном направлении.

Мы продолжим изучать основы геометрической оптики, а в будущем мы обязательно рассмотрим примеры решения задач на применение различных законов. Ну а если сейчас у вас имеются какие-либо вопросы, добро пожаловать за верными ответами к специалистам студенческого сервиса . Мы поможем решить любую задачу!