План открытого урока по физике. Тема «Линзы

На данном уроке будет рассмотрена тема «Формула тонкой линзы». Этот урок является своеобразным заключением и обобщением всех знаний, полученных в разделе геометрической оптики. В ходе занятия учащимся придётся решить несколько задач, используя формулу тонкой линзы, формулу увеличения и формулу для вычисления оптической силы линзы.

Представлена тонкая линза, у которой указана главная оптическая ось, и указано, что в плоскости, проходящей через двойной фокус, располагается светящаяся точка. Необходимо определить, какая из четырех точек на чертеже соответствует правильному изображению этого предмета, то есть светящейся точке.

Задача может быть решена несколькими способами, рассмотрим два из них.

На рис. 1 изображена собирающая линза с оптическим центом (0), фокусы (), линза разнофокусная и точки двойного фокуса (). Светящаяся точка () лежит в плоскости, расположенной в двойном фокусе. Необходимо показать, какая из четырех точек соответствует построению изображения или изображению этой точки на схеме.

Решение задачи начнем с вопроса построения изображения.

Светящаяся точка () располагается на двойном расстоянии от линзы, то есть это расстояние равно двойному фокусу, его можно построить следующим образом: взять линию, которая соответствует лучу, движущемуся параллельно главной оптической оси, преломленный луч пройдет через фокус (), а второй луч пройдет через оптический центр (0). Пересечение окажется на расстоянии двойного фокуса () от линзы, это не что иное, как изображение, и оно соответствует точке 2. Правильный ответ: 2.

Одновременно с этим можно воспользоваться формулой тонкой линзы и вместо подставить , ведь точка лежит на расстоянии двойного фокуса, при преобразовании получим, что изображение тоже получается в точке, удаленной на двойном фокусе, ответ будет соответствовать 2 (рис. 2).

Рис. 2. Задача 1, решение ()

Задачу можно было бы решить и с помощью таблицы, которую мы рассматривали ранее, там указано, что если предмет находится на расстоянии двойного фокуса, то изображение тоже получится на расстоянии двойного фокуса, то есть, помня таблицу, ответ можно было бы получить сразу.

Предмет высотой 3 сантиметра находится на расстоянии 40 сантиметров от собирающей тонкой линзы. Определить высоту изображения, если известно, что оптическая сила линзы составляет 4 диоптрии.

Записываем условие задачи и, поскольку величины указаны в разных системах отсчета, переводим их в единую систему и запишем уравнения, необходимые для решения задачи:

Мы использовали формулу тонкой линзы для собирающей линзы с положительным фокусом, формулу увеличения () через величину изображения и высоту самого предмета, а также через расстояние от линзы до изображения и от линзы до самого предмета. Вспомнив, что оптическая сила () - это и есть обратное значение фокусного расстояния, можем переписать уравнение тонкой линзы. Из формулы увеличения запишем высоту изображения. Далее запишем выражение для расстояния от линзы до изображения из преобразования формулы тонкой линзы и запишем формулу, по которой можно вычислить расстояние до изображения (. Подставив значение в формулу высоты изображения, мы получим необходимый результат , то есть высота изображения получилась больше, чем высота самого предмета. Следовательно, изображение действительное и увеличение больше единицы.

Перед тонкой собирающей линзой поместили предмет, в результате такого размещения увеличение получилось равным 2. Когда предмет передвинули относительно линзы, то увеличение стало равно 10. Определить на сколько передвинули предмет и в каком направлении, если первоначальное расстояние от линзы до предмета составляло 6 сантиметров.

Для решения задачи мы будем использовать формулу вычисления увеличения и формулу собирающей тонкой линзы.

Из этих двух уравнений мы и будем искать решение. Выразим расстояние от линзы до изображения в первом случае, зная увеличение и расстояние. Подставив значения в формулу тонкой линзы, мы получим значение фокуса . Далее все повторяем для второго случая, когда увеличение составляет 10. Получим расстояние от линзы до предмета во втором случае, когда предмет передвинули, . Мы видим, что предмет был передвинут ближе к фокусу, так как фокус составляет 4 сантиметра, в этом случае увеличение составляет 10, то есть увеличивается изображение в 10 раз. Окончательный ответ , сам предмет был передвинут ближе к фокусу линзы и таким образом увеличение стало больше в 5 раз.

Геометрическая оптика остается очень важной темой в физике, все задачи решаются исключительно на понимании вопросов построении изображения в линзах и, конечно, знании необходимых уравнений.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. - М.: Просвещение, 1990.

Домашнее задание

  1. Какой формулой определяется оптическая сила тонкой линзы?
  2. Какая связь между оптической силой и фокусным расстоянием?
  3. Запишите формулу тонкой собирающей линзы.
  1. Интернет-портал Lib.convdocs.org ().
  2. Интернет-портал Lib.podelise.ru ().
  3. Интернет-портал Natalibrilenova.ru ().

Линзы, как правило, имеют сферическую или близкую к сферической поверхность. Они могут быть вогнутыми, выпуклыми или плоскими (радиус равен бесконечности). Обладают двумя поверхностями, через которые проходит свет. Они могут сочетаться по-разному, образуя различные виды линз (фото приведено далее в статье):

  • Если обе поверхности выпуклые (изогнуты наружу), центральная часть толще, чем по краям.
  • Линза с выпуклой и вогнутой сферами называется мениском.
  • Линза с одной плоской поверхностью носит название плоско-вогнутой или плоско-выпуклой, в зависимости от характера другой сферы.

Как определить вид линзы? Остановимся на этом подробнее.

Собирающие линзы: виды линз

Независимо от сочетания поверхностей, если их толщина в центральной части больше, чем по краям, они называются собирающими. Имеют положительное фокусное расстояние. Различают следующие виды собирающих линз:

  • плоско-выпуклые,
  • двояковыпуклые,
  • вогнуто-выпуклые (мениск).

Их еще называют «положительными».

Рассеивающие линзы: виды линз

Если их толщина в центре тоньше, чем по краям, то они носят название рассеивающих. Имеют отрицательное фокусное расстояние. Существуют такие виды рассеивающих линз:

  • плоско-вогнутые,
  • двояковогнутые,
  • выпукло-вогнутые (мениск).

Их еще называют «отрицательными».

Базовые понятия

Лучи от точечного источника расходятся из одной точки. Их называют пучком. Когда пучок входит в линзу, каждый луч преломляется, изменяя свое направление. По этой причине пучок может выйти из линзы в большей или меньшей степени расходящимся.

Некоторые виды оптических линз изменяют направление лучей настолько, что они сходятся в одной точке. Если источник света расположен, по меньшей мере, на фокусном расстоянии, то пучок сходится в точке, удаленной, по крайней мере, на ту же дистанцию.

Действительные и мнимые изображения

Точечный источник света называется действительным объектом, а точка сходимости пучка лучей, выходящего из линзы, является его действительным изображением.

Важное значение имеет массив точечных источников, распределенных на, как правило, плоской поверхности. Примером может служить рисунок на матовом стекле, подсвеченный сзади. Другим примером является диафильм, освещенный сзади так, чтобы свет от него проходил через линзу, многократно увеличивающую изображение на плоском экране.

В этих случаях говорят о плоскости. Точки на плоскости изображения 1:1 соответствуют точкам на плоскости объекта. То же относится и к геометрическим фигурам, хотя полученная картинка может быть перевернутой по отношению к объекту сверху вниз или слева направо.

Схождение лучей в одной точке создает действительное изображение, а расхождение - мнимое. Когда оно четко очерчено на экране - оно действительное. Если же изображение можно наблюдать, только посмотрев через линзу в сторону источника света, то оно называется мнимым. Отражение в зеркале - мнимое. Картину, которую можно увидеть через телескоп - тоже. Но проекция объектива камеры на пленку дает действительное изображение.

Фокусное расстояние

Фокус линзы можно найти, пропустив через нее пучок параллельных лучей. Точка, в которой они сойдутся, и будет ее фокусом F. Расстояние от фокальной точки до объектива называют его фокусным расстоянием f. Параллельные лучи можно пропустить и с другой стороны и таким образом найти F с двух сторон. Каждая линза обладает двумя F и двумя f. Если она относительно тонка по сравнению с ее фокусными расстояниями, то последние приблизительно равны.

Дивергенция и конвергенция

Положительным фокусным расстоянием характеризуются собирающие линзы. Виды линз данного типа (плоско-выпуклые, двояковыпуклые, мениск) сводят лучи, выходящие из них, больше, чем они были сведены до этого. Собирающие объективы могут формировать как действительное, так и мнимое изображение. Первое формируется только в случае, если расстояние от линзы до объекта превышает фокусное.

Отрицательным фокусным расстоянием характеризуются рассеивающие линзы. Виды линз этого типа (плоско-вогнутые, двояковогнутые, мениск) разводят лучи больше, чем они были разведены до попадания на их поверхность. Рассеивающие линзы создают мнимое изображение. И только когда сходимость падающих лучей значительна (они сходятся где-то между линзой и фокальной точкой на противоположной стороне), образованные лучи все еще могут сходиться, образуя действительное изображение.

Важные различия

Следует быть очень внимательными, чтобы отличать схождение или расхождение лучей от конвергенции или дивергенции линзы. Виды линз и пучков света могут не совпадать. Лучи, связанные с объектом или точкой изображения, называются расходящимися, если они «разбегаются», и сходящимся, если они «собираются» вместе. В любой коаксиальной оптической системе оптическая ось представляет собой путь лучей. Луч вдоль этой оси проходит без какого-либо изменения направления движения из-за преломления. Это, по сути, хорошее определение оптической оси.

Луч, который с расстоянием отдаляется от оптической оси, называется расходящимся. А тот, который к ней становится ближе, носит название сходящегося. Лучи, параллельные оптической оси, имеют нулевое схождение или расхождение. Таким образом, когда говорят о схождении или расхождении одного луча, его соотносят с оптической осью.

Некоторые виды которых такова, что луч отклоняется в большей степени к оптической оси, являются собирающими. В них сходящиеся лучи сближаются еще больше, а расходящиеся отдаляются меньше. Они даже в состоянии, если их сила достаточна для этого, сделать пучок параллельным или даже сходящимся. Аналогично рассеивающая линза может развести расходящиеся лучи еще больше, а сходящиеся - сделать параллельными или расходящимися.

Увеличительные стекла

Линза с двумя выпуклыми поверхностями толще в центре, чем по краям, и может использоваться в качестве простого увеличительного стекла или лупы. При этом наблюдатель смотрите через нее на мнимое, увеличенное изображение. Объектив камеры, однако, формирует на пленке или сенсоре действительное, как правило, уменьшенное в размерах по сравнению с объектом.

Очки

Способность линзы изменять сходимость света называется ее силой. Выражается она в диоптриях D = 1 / f, где f - фокусное расстояние в метрах.

У линзы с силой 5 диоптрий f = 20 см. Именно диоптрии указывает окулист, выписывая рецепт очков. Скажем, он записал 5,2 диоптрий. В мастерской возьмут готовую заготовку в 5 диоптрий, полученную на заводе-изготовителе, и отшлифуют немного одну поверхность, чтобы добавить 0,2 диоптрии. Принцип состоит в том, что для тонких линз, в которых две сферы расположены близко друг к другу, соблюдается правило, согласно которому общая их сила равна сумме диоптрий каждой: D = D 1 + D 2 .

Труба Галилея

Во времена Галилея (начало XVII века), очки в Европе были широко доступны. Они, как правило, изготавливались в Голландии и распространялись уличными торговцами. Галилео слышал, что кто-то в Нидерландах поместил два вида линз в трубку, чтобы удаленные объекты казались больше. Он использовал длиннофокусный собирающий объектив в одном конце трубки, и короткофокусный рассеивающий окуляр на другом конце. Если фокусное расстояние объектива равно f o и окуляра f e , то дистанция между ними должна быть f o -f e , а сила (угловое увеличение) f o /f e . Такая схема называется трубой Галилея.

Телескоп обладает увеличением 5 или 6 крат, сравнимым с современными ручными биноклями. Этого достаточно для многих захватывающих Можно без проблем увидеть лунные кратеры, четыре луны Юпитера, фазы Венеры, туманности и звездные скопления, а также слабые звезды в Млечном Пути.

Телескоп Кеплера

Кеплер услышал обо всем этом (он и Галилей вели переписку) и построил еще один вид телескопа с двумя собирающими линзами. Та, у которой большое фокусное расстояние, является объективом, а та, у которой оно меньше - окуляром. Расстояние между ними равно f o + f e , а угловое увеличение составляет f o /f e . Этот кеплеровский (или астрономический) телескоп создает перевернутое изображение, но для звезд или луны это не имеет значения. Данная схема обеспечила более равномерное освещение поля зрения, чем телескоп Галилея, и была более удобна в использовании, так как позволяла держать глаза в фиксированном положении и видеть все поле зрения от края до края. Устройство позволяло достичь более высокого увеличения, чем труба Галилея, без серьезного ухудшения качества.

Оба телескопа страдают от сферической аберрации, в результате чего изображения не полностью сфокусированы, и хроматической аберрации, создающей цветные ореолы. Кеплер (и Ньютон) считал, что эти дефекты невозможно преодолеть. Они не предполагали, что возможны ахроматические виды которых станет известна лишь в XIX веке.

Зеркальные телескопы

Грегори предположил, что в качестве объективов телескопов можно использовать зеркала, так как в них отсутствует цветная окантовка. Ньютон воспользовался этой идеей и создал ньютоновскую форму телескопа из вогнутого посеребренного зеркала и положительного окуляра. Он передал образец Королевскому обществу, где тот находится и по сей день.

Однолинзовый телескоп может проецировать изображение на экран или фотопленку. Для должного увеличения требуется положительная линза с большим фокусным расстоянием, скажем, 0,5 м, 1 м или много метров. Такая компоновка часто используется в астрономической фотографии. Людям, незнакомым с оптикой, может показаться парадоксальной ситуация, когда более слабая длиннофокусная линза дает большее увеличение.

Сферы

Высказывались предположения, что древние культуры, возможно, имели телескопы, потому что они делали маленькие стеклянные шарики. Проблема состоит в том, что неизвестно, для чего они использовались, и они, конечно, не могли бы лечь в основу хорошего телескопа. Шарики могли применяться для увеличения мелких объектов, но качество при этом вряд ли было удовлетворительным.

Фокусное расстояние идеальной стеклянной сферы очень короткое и формирует действительное изображение очень близко от сферы. Кроме того, аберрации (геометрические искажения) значительные. Проблема кроется в расстоянии между двумя поверхностями.

Однако если сделать глубокую экваториальную канавку, чтобы блокировать лучи, которые вызывают дефекты изображения, она превращается из очень посредственной лупы в прекрасную. Такое решение приписывается Коддингтону, а увеличитель его имени можно приобрести сегодня в виде небольших ручных луп для изучения очень маленьких объектов. Но доказательств того, что это было сделано до 19-го века, нет.

Виды линз Тонкие – толщина линзы мала по сравнению с радиусами поверхностей линзы и расстоянием предмета от линзы. Формула тонкой линзы 1 1 + 1 = F d f . F= d f ; d+ f где F – фокусное расстояние; d- расстояние от предмета до линзы; f – расстояние от линзы до изображения оптический центр R 1 О О 1 главная оптическая ось R 2 О 2

Характеристики линз 1. Фокусное расстояние Точка, в которой пересекаются после преломления в линзе лучи, называют главным фокусом линзы (F). F

Характеристики линз 1. Фокусное расстояние У собирающей линзы два главных действительных фокуса. F Фокусное расстояние (F)

Характеристики линз 2. Оптическая сила линзы Величина, обратная фокусному расстоянию, называется оптической силой линзы D=1/F Измеряется в диоптриях (дптр) 1 дптр=1/м Оптическую силу собирающей линзы считают положительной величиной, а рассеивающей – отрицательной.

Охрана своего зрения Нужно: Нельзя: Ш рассматривать предмет на § читать во время еды, при свече, в движущемся транспорте и лежа; расстоянии не менее 30 см, сидеть за компьютером на расстоянии 6070 см. от экрана, от телевизора – 3 м. (экран должен находиться на уровне глаз); Ш чтобы свет падал с левой стороны; Ш умело пользоваться приборами домашнего обихода; Ш опасные для глаз виды работ выполнять в специальных очках; § смотреть телевизор непрерывно более 2 х часов; § чтобы было слишком яркое освещение помещения; § открыто смотреть на прямые лучи солнечного света; § тереть глаза руками при попадании пыли. Ш при попадании инородного тела протереть глаз чистой влажной салфеткой. Если вы наблюдаете нарушение вашего зрения – обратитесь к врачу (офтальмолог).

Линза представляет собой тело, прозрачное и ограниченное. Ограничителями тела линзы чаще всего выступают либо две криволинейные поверхности, либо одна криволинейная, а другая плоская. Как известно, линзы бывают выпуклыми и вогнутыми. Соответственно выпуклой является линза, у которой середина плоскости утолщена относительно ее краев. Вогнутые линзы представляют собой другую картины: их середина тоньше относительно поверхности края. Если показатель преломления лучей окружающей среды меньше по-сравнению с этим же показателем выпуклой линзы, то в ней пучок, образованный параллельными лучами, преломляется преобразуясь в сходящийся пучок. Вогнутые линзы с такими свойствами получили название - собирающихся линз. Если же в вогнутой линзе пучок параллельно направленных лучей при преломлении превращается в расходящийся, то это рассеивающиеся вогнутые линзы, у них воздух выполняет роль внешней среды.

Линза представляет собой сферические поверхности с геометрическими центрами. Прямая, которая соединяет центры, является главной оптической осью. У тонких линз толщина меньше радиуса их искривления. Для таких линз верно утверждение, что их вершины сегментов близко расположены и представляют собой оптический центр. При этом побочной осью признается любая прямая, проходящая через центр под углом к прямой, соединяющей центры сферических поверхностей. А вот чтобы определить главный фокус линзы, достаточно представить себе, что на собирающую вогнутую линзу попадает пучок лучей. При этом эти лучи параллельны по отношению к главной оси. После преломления же такие лучи соберутся в одной точке, которая и будет фокусом. В фокусе можно увидеть продолжения лучей. Это лучи до преломления направленные параллельно главной оси. Но этот фокус мнимый. Существует и главный фокус рассеивающей линзы. Вернее два главных фокуса. Если представить себе главную оптическую ось, то главные фокусы будут на ней на равном удалении от центра. Если мы рассчитаем величину, которая будет обратной по отношению к фокусному расстоянию, то мы получим оптическую силу.

Единицей оптической силы линзы принят диоптрий, если мы имеем в виду систему СИ. Что характерно, у собирающей линзы ее оптическая сила представляет собой положительную величину, в то время как у рассеивающей она будет отрицательной. Если плоскость имеет свойство проходить через главный фокус линзы и при этом перпендикулярно к главной оси, то это фокальная плоскость. Достоверно известно, что лучи в виде пучка, направленные на линзу и при этом являющиеся параллелями к побочной оптической оси, соберутся в пересечении оси и фокальной плоскости. Способности линз отражать и преломлять используют в оптическом приборостроении.

Все мы знаем примеры бытового применения линз: лупа, очки, фотоаппарат, в науке и исследованиях это микроскоп. Значение открытия свойства линзы для человека огромно. В оптике как раз чаще всего используются линзы сферические. Их изготавливают из стекла и ограничивают сферами.

  • 6.Интерференция в тонких пленках.
  • 7. Явление полного внутреннего отражения. Световоды.
  • 8.Применение интерференции. Интерферометр Майкельсона.
  • 9. Применение интерференции. Интерферометр Фабри-Перо.
  • 10. Просветление оптики.
  • 10. Метод зеркал Френеля для наблюдения итнтерференции света. Расчёт интерференционной картины.
  • Бизеркало Френеля
  • 12.Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии и круглом диске. Графическое решение.
  • 13.Дифракция на одной щели. Как влияет на дифракцию Фраунгофера от одной щели увеличение длины волны и ширины щели?
  • 16.Дифракция рентгеновских лучей. Условия Вульфа-Брэггов.
  • 17. Физические принципы получения и восстановления голограммы.
  • 18. Поляризация при отражении и преломлении. Формулы Френеля.
  • 19. Двойное лучепреломление. Его объяснение. Нарисуйте ход луча в двоякопреломляющем одноосном кристаллею. Поляризация при двойном лучепреломлении.
  • 20. Интерференция поляризованных лучей.
  • Xод луча при нормальном и наклонном падении.
  • 22. Анализ поляризованного света. Закон Малюса.
  • 23. Искусственное двойное лучепреломление. Эффект Керра. Оптический метод определения напряжений в образце.
  • 24. Вращение плоскости поляризации. Поляриметр-сахариметр.
  • 25.Рассеяние света. Степень поляризации рассеянного света.
  • 26. Дисперсия света. Электронная теория дисперсии. Ход белого луча в призме. Вывод формулы для угла отклонения лучей призмой.
  • 27. Излучение Вавилова – Черенкова.
  • 28. Эффект Доплера в оптике.
  • 29. Тепловое излучение.
  • 31. Вывод законов теплового излучения (законов Вина, Стефана-Больцмана) из формулы Планка.
  • 32. Оптическая пирометрия. Пирометр с исчезающей нитью.
  • 34. Фотоэффект. Законы ф-та. Объяснение ф-та. Зависимость максимальной кинетической энергии фотоэлектронов от частоты света.
  • 35. Фотоэффект.
  • 36. Противоречие законов фотоэффекта з-нам классической физики. Ур-е Эйнштейна для ф-та. Внутренний ф-т. Применение ф-та.
  • 37. Эффект Комптона.
  • 38. Давление света. Вывод формулы для давления света на основе фотонных представлений о свете.
  • 39. Тормозное рентгеновское излучение. График зависимости интенсивности от напряжения на лучевой трубке.
  • 41. Дискретность квантовых состояний, опыт Франка и Герца, интерпретация опыта; квантовые переходы, коэффициенты Эйнштейна для квантовых переходов. Связь между ними.
  • 42. Ядерная модель атома.
  • 43. Постулаты Бора. Теория атома водорода по Бору. Расчет энергетических состояний атома водорода с точки зрения теории Бора.
  • 44. Пользуясь соотношением неопределённости Гейзенберга, оценить минимальную энергию электрона в атоме водорода.
  • 46. Спектры щелочных элементов. Дуплетная структура спектров щелочных элементов.
  • 47. Опыт Штерна и Герлаха.
  • 48. Эффект Зеемана.
  • 49. Застройка электронных оболочек. Периодическая система элементов Менделеева.
  • 50. Характеристическое рентгеновское излучение. Закон Мозли. Дублетный характер рентгеновских спектров.
  • 51. Молекулярные спектры.
  • 52.Комбинационное рассеяние света.
  • 53.Люминисценция. Определение. Правило Стокса.
  • 54. Оптические квантовые генераторы. Свойства лазерного излучения.
  • 2. Свойства лазерного излучения.
  • 56. Нелинейная оптика.
  • 57. Атомное ядро: состав, характеристики, модели, ядерные силы. Масса. Размеры ядер.
  • 59. Ядерные реакции.
  • 62. Фундаментальное взаимодействия. Элементарные частицы, их классификация, методы решения. Законы сохранения в физике элементарных частиц.
  • 63.Космическое излучение.
  • 61. Ядерный магн. Резонанс.
  • и1.Законы геометрической оптики.Их обоснование с точки зрения теории Гюйгенса.

    Oптика – наука о природе света и явлений, связанных с распространением и взаимодействием света. Впервые оптика, была сформулирована в сер.17в.Ньютоном и Гюйгенсом. Ими были сформулированы законы геометрической оптики:1). Закон прямолинейного распространения света – свет распространяется в виде лучей, доказательством чего является образование резкой тени на экране, если на пути световых лучей находится непрозрачная преграда. Доказательством является и образование полутени.

    2).закон независимости световых пучков – если световые потоки от двух независимых

    и
    сточников пересекаются, они друг друга не возмущают.

    3). Закон отражения света – если световой поток падает на границу раздела двух сред, то он может испытать отражение, преломление. При этом луч падающий, отраженный, преломлённый и нормаль лежат в одной плоскости. А угол падения равен углу отражения.

    4).синус угла падения относится к синусу угла отражения относятся также как показатели отношения преломления двух сред.
    Принцип Гюйгенса:если свет – это волна, то от источника света распространяется волновой фронт, а каждая точка волнового фронта в данный момент времени являются источником вторичных волн, огибающая вторичных волн представляет новый фронт волн.

    Первый закон Ньютон обьяснил из сох

    Ранения импульса 2-ой з-н динамики, а

    Гюйгенс не смог его объяснить. t

    2-ой закон:Гюйгенс:две несогласованные волны не возмущают друг друга

    Ньютон: не смог: столкновение частиц – возмущение.

    3-ий з-н:Ньютон: объяснил как и з-н сохранения импульса

    4-ый з-н.

    af-фронт пеломлённой волны.


    В 19 веке появляются ряд работ:Френеля, Юнга, которые док-ют, что свет это волна.В сер.19 века была создана теория электромагнитное поле Максвела, согласно теории, что эти волны являются поперечными и только свет волны испытывает на себе явление поляризации.

    Полное внутреннее отражение.

    2. Линзы. Вывод формулы линзы. Построение изображений в линзе. Линзы

    Линза представляет собой обычно стеклянное тело, ограниченное с двух сторон сферическими поверхностями; в частном случае одна из поверхностей линзы может быть плоскостью, которую можно рассматривать как сферическую поверхность бесконечно большого радиуса. Линзы могут быть изготовлены не только из стекла, но и из любого прозрачного вещества (кварц, каменная соль и тд.). Поверхности линз могут быть также более сложной формы, например цилиндрические, параболические.

    Точка О оптический центр линзы.

    О 1 О 2 толщина линзы.

    С 1 и С 2 – центры ограничивающих линзу сферических поверхностей.

    Всякая прямая проходящая через оптический центр называется оптической осью линзы. Та из осей, которая проходит через центры обеих преломляющих поверхностей линзы наз. главной оптической осью. Остальные – побочными осями.

    Вывод формулы линзы

    ;
    ;
    ;
    ;

    EG=KA+AO+OB+BL;KA=h 2 /S 1 ; BL= h 2 /S 2;

    EG=h 2 /r 1 +h 2 /r 2 + h 2 /S 1 + h 2 /S 2 =U 1 /U 2 ; U 1 =c/n 1 ; U 2 =c/n 2

    (h 2 /r 1 +h 2 /r 2)=1/S 1 +1/r 1 +1/S 2 +1/r 2 =n 2 /n 1 (1/r 1 +1/r 2);

    1/S 1 +1/S 2 =(n 2 /n 1 -1)(1/r 1 +1/r 2);

    1/d+1/f=1/F=(n 2 /n 1 -1)(1/r 1 +1/r 2);

    r 1 ,r 2 >0 - выпуклая

    r 1 ,r 2 <0 вогнутая

    d=x 1 +F; f =x 2 +F;x 1 x 2 =F 2 ;

    Построение изображений в линзе

    3.Интерференция света. Амплитуда при интерференции. Расчет интерференционной картины в опыте Юнга.

    Интерференция света – это явление наложения волн от двух или нескольких когерентных источников, в результате которых происходит перераспределение энергии этих волн в пространстве. В области перекрытия волн колебания налагаются друг на друга, происходит сложение волн, в результате чего колебания в одних местах получаются более сильные, а в других- более слабые. В каждой точке среды результирующее колебание будет суммой всех колебаний, дошедших до данной точки. Результирующее колебание в каждой точке среды имеет постоянную во времени амплитуду, зависящую от расстояний точки среды от источников колебаний. Такого рода сложение колебаний называется интерференцией от когерентных источников.

    Возьмем точечный источник S , от которого распространяется сферическая волна. На пути волны поставлена преграда с двумя точечными отверстиями s1 и s2, расположенных симметрично по отношению к источнику S. Отверстия s1 и s2 колеблются с одинаковой амплитудой и в одинаковых фазах, т.к. их расстояния от

    источника S одинаковы. Справа от преграды будут распространяться две сферические волны, и в каждой точке среды колебание возникнет в результате сложения этих двух волн. Рассмотрим результат сложения в некоторой точке А, которая отстоит от источников s1 и s2 соответственно на расстоянии r1 и r2 .Колебания источников s1 и s2

    имеющие одинаковые фазы, можно представить в виде:

    Тогда колебания, дошедшие до точки А соответственно от источников s1 и s2:
    , где
    -частота колебаний. Разность фаз слагаемых колебаний в точке А будет
    . Амплитуда результирующего колебания зависит от разности фаз: если разность фаз =0 или кратна 2(разность хода лучей =0 или целому числу длин волн), то амплитуда имеет максимальное значение:А=А1+А2. Если разность фаз = нечетном числу (разность хода лучей = нечетному числу полуволн), то амплитуда имеет минимальное значение, равное разности слагемых амплитуд.

    Схема осуществления интерференции света по методу Юнга . Источником света служит ярко освещенная узкая щель S в экране А1 . Свет от нее падает на второй непрозрачный экран А2 , в котором имеются две одинаковые узкие щели S1 и S 2 , параллельные S. В пространстве за экраном А2 распространяются 2 сис-мы

    "