Транспорт глюкозы в клетки мозга происходит. Транспорт веществ через клеточные мембраны

Транслокация транспортеров глюкозы к мембране клетки наблюдается уже через несколько минут после взаимодействия инсулина с рецептором, и для ускорения или поддержания процесса рециклирования белков- транспортеров необходимо дальнейшее стимулирующее влияние инсулина.

Идентифицировано два класса транспортеров глюкозы: Na+-глюкозный ко-транспортер и пять изоформ собственных транспортеров глюкозы . Согласно данным этих авторов, Na+-глюкозный ко-транспортер, или симпортер, экспрессируется специальными эпителиальными реснитчатыми клетками тонкой кишки и проксимального отдела канальцев почек. Этот белок осуществляет активный транспорт глюкозы из просвета кишки или нефрона против градиента её концентрации путем связывания глюкозы с теми ионами натрия, которые транспортируются ниже градиента концентрации. Градиент концентрации Na+ поддерживается активным белком-транспортером натрия через поверхность пограничных реснитчатых клеток посредством мембраносвязанных Na+, K+-зависимой АТФазы. Молекула этого белка - транспортера состоит из 664 аминокислотных остатков, его синтез кодируется геном, расположенным на 22-й хромосоме.

Второй класс переносчиков глюкозы представлен собственными транспортерами глюкозы. Это мембранные белки, находящиеся на поверхности всех клеток и осуществляющие транспорт глюкозы ниже градиента ее концентрации посредством соответствующей диффузии, т.е. путем пассивного транспорта, при котором транслокация глюкозы через билипидную мембрану клетки ускоряется мембранносвязанным транспортным белком. Транспортеры глюкозы первично осуществляют транспорт глюкозы не только в клетку, но и из клетки. Транспортеры II класса участвуют и во внутриклеточном перемещении глюкозы. Глюкоза абсорбируется на поверхности эпителиальных клеток, обращенных в просвет кишки или нефрона, с помощью Nа+-глюкозного котранспортера.

Факторами, регулирующими экспрессию транспортеров глюкозы, являются инсулин, факторы роста, пероральные сахароснижающие препараты, ванадий, глюкокортикоиды, цАМФ, голодание, дифференцировка клеток и протеинкиназа С.

ГЛЮТ-1 (эритроцитарный тип) - первый клонированный белок-транспортер. Ген, кодирующий этот белок, расположен на I-й хромосоме. ГЛЮТ-1 экспрессируется во многих тканях и клетках: эритроцитах, плаценте, почках, толстой кишке. По данным K. Kaestner и соавт. (1991), синтез ГЛЮТ-1 и ГЛЮТ-4 в адипоцитах транскрипционно регулируется цАМФ реципрокным способом. Наряду с этим экспрессия ГЛЮТ-1 в мышцах стимулируется угнетением N-связанного гликозилирования .

ГЛЮТ-2 (печеночный тип) синтезируется только в печени, почках, тонкой кишке (базолатеральная мембрана) и панкреатических b-клетках. Молекула ГЛЮТ-2 включает 524 аминокислотных остатка. Ген, кодирующий этот белок, локализуется на 3-й хромосоме. Изменение количества или структурной формы ГЛЮТ-2 вызывает снижение чувствительности b-клеток к глюкозе. Это происходит при сахарном диабете II типа, когда наблюдается индукция экспрессии ГЛЮТ-2 в проксимальных канальцах почек, причем количество ГЛЮТ-2 мРНК увеличивается в 6,5 раза, а количество ГЛЮТ-1 мРНК уменьшается до 72% от нормы .

ГЛЮТ-3 (мозговой тип) экспрессируется во многих тканях: мозге, плаценте, почках, скелетных мышцах плода (уровень этого белка в скелетных мышцах взрослого человека низкий). Молекула ГЛЮТ-3 состоит из 496 аминокислотных остатков. Ген, кодирующий этот белок, расположен на 12-й хромосоме.

ГЛЮТ-4 (мышечно-жировой тип) содержится в тканях, где транспорт глюкозы быстро и значительно увеличивается после воздействия инсулина: скелетной белой и красной мышцах, белой и коричневой жировой клетчатке, мышце сердца. Молекула белка состоит из 509 аминокислотных остатков. Ген, кодирующий ГЛЮТ-4, локализуется на 17-й хромосоме. Основной причиной клеточной резистентности к инсулину при ожирении и инсулиннезависимом диабете (ИНЗД), по данным W.Garvey и соавт. (1991), является претрансляционное угнетение синтеза ГЛЮТ-4, однако его содержание в мышечных волокнах I и II типа у больных ИНЗД при ожирении и нарушении толерантности к глюкозе одинаково. Резистентность мышц этих больных к инсулину, вероятно, связана не с уменьшением количества ГЛЮТ-4, а с изменением их функциональной активности или нарушением транслокации.

ГЛЮТ-5 (кишечный тип) находится в тонкой кишке, почках, скелетных мышцах и жировой ткани. Молекула этого белка состоит из 501 аминокислотного остатка. Ген, кодирующий синтез белка, расположен на 1-й хромосоме.

Конечными продуктами гидролиза углеводов в желудочно-кишечном тракте являются всего три вещества: глюкоза, фруктоза и галактоза. При этом на долю глюкозы приходится почти 80% общего количества этих моносахаридов. После всасывания в кишечнике большая часть фруктозы и практически вся галактоза преобразуются в печени в глюкозу. Вследствие этого в крови присутствуют только небольшие количества фруктозы и галактозы. В итоге процессов превращения глюкоза становится единственным представителем углеводов, транспортируемым во все клетки организма.

Соответствующие ферменты , необходимые клеткам печени для обеспечения процессов взаимного превращения моносахаридов - глюкозы, фруктозы и галактозы - показаны на рисунке. В результате этих реакций, когда печень высвобождает моносахариды обратно в кровь, окончательным продуктом, попадающим в кровь, становится глюкоза. Причина этого явления заключается в том, что клетки печени содержат большое количество глюкозофосфатазы, поэтому глюкозо-6-фосфат может расщепляться на глюкозу и фосфат. Затем глюкоза транспортируется через мембраны клеток обратно в кровь.

Хотелось бы еще раз подчеркнуть , что обычно более 95% всех моносахаридов, циркулирующих в крови, представлены конечным продуктом превращения - глюкозой.
Транспорт глюкозы через мембрану клетки . Прежде чем глюкоза будет использована клетками тканей, она должна транспортироваться через мембраны клеток в цитоплазму. Однако глюкоза не может свободно диффундировать через поры в клеточных мембранах, т.к. максимальная молекулярная масса частиц должна быть в среднем равна 100, в то время как молекулярная масса глюкозы составляет 180. Тем не менее глюкоза может относительно легко проникать внутрь клеток благодаря механизму облегченной диффузии. Основы этого механизма обсуждались в главе 4, напомним его основные моменты.

Насквозь прободая липидную мембрану клеток , белки-переносчики, количество которых в мембране достаточно велико, могут взаимодействовать с глюкозой. В такой связанной форме глюкоза может транспортироваться белком-переносчиком с одной стороны мембраны на другую и там отделяться; если с одной стороны мембраны концентрация глюкозы выше, чем с другой, то глюкоза будет транспортироваться туда, где ее концентрация ниже, а не в противоположном направлении. Транспорт глюкозы через клеточные мембраны в большинстве тканей резко отличается от транспорта, который наблюдается в желудочно-кишечном тракте или в эпителиоцитах канальцевого аппарата почек.

В обоих упомянутых случаях транспорт глюкозы опосредован сопряженным с механизмом активного транспортом натрия. Активный транспорт натрия обеспечивает энергией процесс всасывания глюкозы против градиента концентрации. Такой сопряженный с натрием активный механизм транспорта глюкозы встречается только в специализированных эпителиоцитах, приспособленных для активного процесса абсорбции глюкозы. В других клеточных мембранах глюкоза транспортируется только из областей с высокой концентрацией в область низких концентраций с помощью механизма облегченной диффузии, возможность которого создается особыми свойствами расположенного в мембране белка-переносчика глюкозы.

обмен углевод глюкоза гликолиз

В транспорте глюкозы между клетками и кровью играют роль белки-переносчики. Эти белки обозначаются GluT и пронумерованы по порядку их обнаружения. Они осуществляют транспорт глюкозы между клетками и кровью по градиенту концентрации (в отличие от переносчиков, транспортирующих мсх при их всасывании в кишечнике против градиента концентрации). GluT1 находится в эндотелии ГЭБ. Он служит для обеспечения глюкозой мозга. GluT2 в стенке кишечника, печени и почках - органах, осуществляющих выделение глюкозы в кровь. GluT3 находится в нейронах мозга. GluT4 - главный переносчик глюкозы в мышцах и адипоцитах. GluT5 находится в тонкой кишке, подробности его функции неизвестны.

Особенно интенсивно используют глюкозу следующие клетки и ткани: 1) нервная ткань, т.к. для нее глюкоза - единственный источник энергии, 2) мышцы (для выработки энергии на сокращения), 3) стенка кишечника (процессы всасывания различных веществ требуют затраты энергии), 4) почки (образование мочи - процесс энергозависимый), 5) надпочечники (необходима энергия для синтеза гормонов); 6) эритроциты; 7) жировая ткань (глюкоза необходима для нее как источник глицерина для образования ТАГ); 8) молочная железа, особенно в период лактации (глюкоза необходима для образования лактозы).

В тканях около 65% глюкозы окисляется, 30% идет на липонеогенез, 5% на гликогеногенез.

Глюкостатическая функция печени обеспечивается тремя процессами: 1) гликогеногенезом, 2) гликогенолизом, 3) глюконеогенезом (синтез глюкозы из промежуточных продуктов распада белков, липидов, углеводов).

При увеличении глюкозы в крови ее избыток используется на образование гликогена (гликогеногенез). При уменьшении содержания глюкозы в крови усиливается гликогенолиз (распад гликогена) и глюконеогенез. Под действием алкоголя глюконеогенез тормозится, что сопровождается падением глюкозы в крови при большом количестве выпитого алкоголя. Клетки печени, в отличие от других клеток способны пропускать глюкозу в обоих направлениях в зависимости от концентрации глюкозы в межклеточном веществе и крови. Т.о., печень выполняет глюкостатическую функцию, поддерживая постоянство содержания глюкозы в крови, которое равно 3,4-6,1 мМ/л. До 10-14 дней после рождения отмечается физиологическая гипогликемия, это связано с тем, что связь с матерью после родов прекратилась, а своих запасов гликогена мало.

Гликогеногенез 5% глюкозы превращается в гликоген. Образование гликогена называется гликогеногенезом. 2/5 запасов гликогена (примерно 150 грамм) откладывается в паренхиме печени в виде глыбок (10% на сырую массу печени). Остальной гликоген откладывается в мышцах и других органах. Гликоген служит резервом УГВ для всех органов и тканей. Запас УГВ в виде гликогена обусловлен тем, что гликоген как ВМС в отличие от глюкозы не повышает осмотического давления клеток.

Гликогеногенез - сложный, многоступенчатый процесс, который состоит из следующих стадий - реакции знать (только текст)см. материалы стр.35:

  • 1 - Образование глюкозо-6-фосфата - в печени под действием глюкокиназы, а в других тканях под действием гексокиназы глюкоза фосфорилируется и превращается в глюкозо-6-фосфат (реакция необратимая).
  • 2 - Превращение глюкозо-6-фосфата в глюкозо-1-фосфат Под действием фосфоглюкомутазы из глюкозо-6-фосфата образуется глюкозо-1-фосфат (реакция обратимая).
  • 3 - Образование УДФ-глюкозы - глюкозо-1-фосфат взаимодействует с УТФ под действием УДФГ-пирофосфорилазы и образуется УДФ-глюкоза и пирофосфат (реакция обратимая)
  • 4 - Удлинение цепи гликогена начинается с включения в работу фермента гликогенина: УДФ-глюкоза взаимодействует с ОН группой тирозина в составе фермента гликогенина (УДФ отщепляется и в дальнейшем при перефосфорилировании вновь дает УТФ). Затем гликозилированный гликогенин взаимодействует с гликогенсинтазой, под действием которой к первому остатку глюкозы через 1-4 связь присоединяется еще до 8 молекул УДФ-глюкозы. При этом УДФ отщепляется (реакции см. стр. 123 - Биохимия в схемах и рисунках, 2изд. - Н.Р. Аблаев).
  • 5 - Ветвление молекулы гликогена - под действием амило(14)(16)-трансглюкозидазы происходит образование альфа(16)-гликозидной связи (см. пленку, не списывать).

Таким образом, 1) в образовании зрелой молекулы гликогена принимают участие гликогенсинтетаза и амилотрансглюкозидаза; 2) для синтеза гликогена требуется много энергии - для присоединения 1молекулы глюкозы к фрагменту гликогена используется 1молекула АТФ и 1 молекула УТФ; 3) для инициации процесса обязательно наличие затравки гликогена и екоторые специализированные белки-праймеры; 4) этот процесс не безграничен - избыток глюкозы превращается в липиды.

Гликогенолиз Процесс распада гликогена осуществляется 2 путями: 1 путь - фосфоролиз, 2 путь - гидролиз.

Фосфоролиз происходит во многих тканях (сразу пишем реакции, на откр. Только текст). При этом к крайним молекулам глюкозы присоединяются фосфорные кислоты и одновременно происходит их отщепление в виде глюкозо-1-фосфатов. Ускоряет реакцию фосфорилаза. Глюкозо-1-фосфат затем переходит в глюкозо-6-фосфат, который не проникает через клеточную мембрану и используется только там где образовался. Такой процесс возможен во всех тканях кроме печени, в которой много фермента глюкозо-6-фосфатазы, который ускоряет отщепление фосфорной кислоты и при этом образуется свободная глюкоза, которая может поступать в кровь - показать на пленке, реакции знать, см. материалы стр.36-37 (на откр. не списывать).

Обязательно в виде текста - Фосфорилаза не действует на альфа(16)гликозидные связи. Поэтому окончательное разрушение гликогена осуществляется амило-1,6-глюкозидазой. Этот фермент проявляет 2 вида активности. Во-первых, активность трансферазы, которая переносит фрагмент из 3-х молекул глюкозы с альфа(16)положения в альфа(14)положение. Во-вторых, активность глюкозидазы, которая ускоряет отщепление свободной глюкозы на уровне альфа(16) гликозидной связи (см. пленку).

Второй путь гликогенолиза - гидролиз, осуществляется преимущественно в печени под действием гамма-амилазы. При этом происходит отщепление крайней молекулы глюкозы от гликогена и свободная глюкоза может поступать в кровь реакции знать, см. материалы стр. 37, показать на пленке.

Т.о., в результате гликогенолиза образуется или глюкозо-монофосфат (при фосфоролизе) или свободная глюкоза (при гидролизе), которые используется на синтетические процессы или подвергаются распаду (окислению).

Конечными продуктами гидролиза углеводов в желудочно-кишечном тракте являются всего три вещества: глюкоза, фруктоза и галактоза. При этом на долю глюкозы приходится почти 80% общего количества этих моносахаридов. После всасывания в кишечнике большая часть фруктозы и практически вся галактоза преобразуются в печени в глюкозу. Вследствие этого в крови присутствуют только небольшие количества фруктозы и галактозы. В итоге процессов превращения глюкоза становится единственным представителем углеводов, транспортируемым во все клетки организма.

Соответствующие ферменты , необходимые клеткам печени для обеспечения процессов взаимного превращения моносахаридов - глюкозы, фруктозы и галактозы - показаны на рисунке. В результате этих реакций, когда печень высвобождает моносахариды обратно в кровь, окончательным продуктом, попадающим в кровь, становится глюкоза. Причина этого явления заключается в том, что клетки печени содержат большое количество глюкозофосфатазы, поэтому глюкозо-6-фосфат может расщепляться на глюкозу и фосфат. Затем глюкоза транспортируется через мембраны клеток обратно в кровь.



Хотелось бы еще раз подчеркнуть , что обычно более 95% всех моносахаридов, циркулирующих в крови, представлены конечным продуктом превращения - глюкозой.
Транспорт глюкозы через мембрану клетки . Прежде чем глюкоза будет использована клетками тканей, она должна транспортироваться через мембраны клеток в цитоплазму. Однако глюкоза не может свободно диффундировать через поры в клеточных мембранах, т.к. максимальная молекулярная масса частиц должна быть в среднем равна 100, в то время как молекулярная масса глюкозы составляет 180. Тем не менее глюкоза может относительно легко проникать внутрь клеток благодаря механизму облегченной диффузии. Основы этого механизма обсуждались в главе 4, напомним его основные моменты.

Видео: Клеточные включения

Насквозь прободая липидную мембрану клеток , белки-переносчики, количество которых в мембране достаточно велико, могут взаимодействовать с глюкозой. В такой связанной форме глюкоза может транспортироваться белком-переносчиком с одной стороны мембраны на другую и там отделяться- если с одной стороны мембраны концентрация глюкозы выше, чем с другой, то глюкоза будет транспортироваться туда, где ее концентрация ниже, а не в противоположном направлении. Транспорт глюкозы через клеточные мембраны в большинстве тканей резко отличается от транспорта, который наблюдается в желудочно-кишечном тракте или в эпителиоцитах канальцевого аппарата почек.

Видео: Medical

В обоих упомянутых случаях транспорт глюкозы опосредован сопряженным с механизмом активного транспортом натрия. Активный транспорт натрия обеспечивает энергией процесс всасывания глюкозы против градиента концентрации. Такой сопряженный с натрием активный механизм транспорта глюкозы встречается только в специализированных эпителиоцитах, приспособленных для активного процесса абсорбции глюкозы. В других клеточных мембранах глюкоза транспортируется только из областей с высокой концентрацией в область низких концентраций с помощью механизма облегченной диффузии, возможность которого создается особыми свойствами расположенного в мембране белка-переносчика глюкозы.

Фермент: Субстрат:

1. Сахараза а) глюкозо(α-1,4)-глюкоза

2. Лактаза б) глюкозо(α-1,2)-фруктоза

3. Изомальтаза в) глюкозо(α-1,6)-глюкоза

г) галактозо(ß-1,4)-глюкоза

д) глюкозо(ß-1,4)-глюкоза

3. Выберите один правильный ответ. Транспорт глюкозы из крови в клетки мышечной и жировой ткани происходит:

а) против градиента концентрации

б) при участии Na + ,K + -АТФазы

в) при участии ГЛЮТ-2

г) во время длительного голодания

д) при участии инсулина

4. Выберите правильные ответы. Транспорт глюкозы в клетки мозга происходит:

а) с участием ГЛЮТ-4 б) независимо от инсулина

в) по механизму симпорта г) по градиенту концентрации

д) с затратой энергии АТФ

5. Выполните «цепное» задание.

А. Укажите фермент, катализирующий реакцию

галактозо(ß-1,4)-глюкоза → галактоза + глюкоза

а) сахараза б) мальтаза в) лактаза

Б. Этот фермент:

а) синтезируется в поджелудочной железе

б) является простым белком

в) относится к классу лиаз

г) образует продукт, который всасывается путем простой диффузии

д) изменяет активность в зависимости от возраста

В. Нарушение действия этого фермента может быть связано с

а) кишечными заболеваниями (гастрит, энтерит)

б) возрастным снижением экспрессии гена

в) наследственным дефектом

г) отсутствием белков-переносчиков в мембране кишечных ворсинок

6. Выберите один правильный ответ. Гликогенфосфорилаза катализирует:

а) расщепление гликозидных связей в точках ветвления молекул гликогена

б) образование глюкозо-6-фосфата

в) образование свободной глюкозы

г) реакцию с участием АТФ

д) образование глюкозо-1-фосфата

    Выберите правильные ответы. Ферменты, наследственные дефекты

которых, являются причиной агликогеноза:

а) гликозилтрансфераза

б) глюкозо-6-фосфатаза

в) протеинкиназа

г) киназа гликогенфосфорилазы

д) УДФ-глюкопирофосфорилаза

8. Установите соответствие.

А. Инсулин 1) влияет на проницаемость мембран клеток мозга

Б. Глюкагон для глюкозы

В. Оба 2) активирует фосфатазу гликогенсинтазы

Г. Ни один 3) активирует реакцию АТФ → цАМФ

4) регулирует обмен гликогена в печени

9. Выберите один неправильный ответ. Катаболизм глюкозы:

а) может протекать как в аэробных, так и в анаэробных условиях

б) происходит в цитозоле и в митохондриях

в) служит основным источником АТФ в мышцах при голодании

г) промежуточные продукты используются в анаболических процессах

д) максимальное количество АТФ, образующееся при катаболизме глюкозы,

равно 38 молям

10. Выберите один неправильный ответ. Аэробный распад глюкозы служит источником:

а) субстратов для синтеза аминокислот

б) субстратов для синтеза ТАГ в печени

в) АТФ для жизнедеятельности эритроцитов

г) субстрата для синтеза НАДФ в жировой ткани

д) субстратов для общего пути катаболизма

11. Выберите один неправильный ответ. Анаэробный гликолиз:

а) служит основным поставщиком энергии для эритроцитов

б) обеспечивает энергией мышцы

в) происходит только при условии регенерации НАД + с помощью пирувата

г) обеспечивает окисление глюкозы и образование АТФ без О 2

д) включает 2 реакции субстратного фосфорилирования

12. Выберите правильные ответы. Глюконеогенез:

а) поддерживает постоянный уровень глюкозы в крови

б) обеспечивает энергетические затраты клеток мозга

в) включает обратимые реакции гликолиза

г) использует 2 моля субстрата для синтеза 1 моля продукта

д) использует 6 молей макроэргических соединений для синтеза 1 моля

продукта

13. Выберите один неправильный ответ. Источниками атомов углерода для синтеза глюкозы являются:

а) аланин б) аспартат

в) ацетил-КоА г) глицерол

14. Установите соответствие.

А. Глюконеогенез в печени 1) ускоряется в абсортивном периоде

Б. Распад гликогена в печени 2) образует глюкозу, не используя АТФ

В. Оба 3) источник глюкозы для других органов

Г. Ни один 4) обеспечивает глюкозой мозг при

длительном голодании