Типы ядерных превращений, альфа и бета-распад. Виды и свойства бета- распада При бета распаде атомных ядер масса ядра

Бета распадом называется процесс самопроизвольного превращения нейтрального ядра в ядро - изобар с зарядом отличным на Z = ±1. Скорость, испускаемых при бета-распаде - частиц близка к скорости света.

Как и -излучение, - излучение отклоняется в магнитном и электрическом полях, но в противоположную сторону и на большее расстояние. Это указывает на то, что бета-излучение является потоком отрицательно заряженных частиц малой массы. По отношению e/m Резерфорд идентифицировал бета-частицы как обычные электроны.

Согласно правилу смещения Фаянса-Содди - распад приводит к возникновению изотопа элемента, смещенного на одну клетку правее от исходного элемента без изменения массового числа.

Для того, чтобы отличать электроны, возникающие при ядерных превращениях, их стали называть бета-частицами . Несмотря на то, что обычно говорится об испускании электронов ядрами, атомные ядра в чистом виде не содержат электроны. Бета - частица образуется в самом акте ядерного превращения.

Известны три вида -распада: электронный -распад, позитронный + -распад и электронный К-захват электрона ядром с одной из ближайших к ядру оболочек.

При бета-распаде массовые числа ядер не изменяются, а изменяется лишь заряд, на единицу больше в случае - -распад и на единицу меньше в случае + -распада и К-захвата. Согласно правилу сдвига Фаянса-Содди , для этих типов распада можно записать:

Все три вида -распада сводятся к следующим видам взаимного превращения нуклонов в ядре.

Распад - n o р + + e - + ; Р S + e - + ; (-распад);

Распад - р n o + е + + ; С В + е + + (+ -распад);

К-захват - р + + e - n + ; Cs + e - Xe + (К- захват)

Таким образом, электроны и позитроны не находятся в ядре, а возникают в момент перехода одного нуклона в другой. Как видно из схем - превращений, характерной чертой всех видов превращений является испускание нейтрино или антинейтрино.

Впервые понятие о нейтрино ввел В. Паули в 1930 году для объяснения «потерянной» части энергии при радиоактивном распаде с испусканием электрона. Суммарная энергия частиц и гамма квантов, оказывалась несколько меньшей энергии частиц, вступающих во взаимодействие. Паули предположил, что недостающая часть энергии улетает с частицей, которую он назвал «нейтрино». Нейтрино - незаряженная элементарная частица обладает массой покоя, близкой к нулю. Нейтрино обладает исключительной проникающей способностью. Его крайне трудно обнаружить, так как прохождение нейтрино через материальную среду практически не сопровождается каким-либо эффектом. Такими же свойствами обладает и антинейтрино.

Как видно из схем превращений при электронном бета-распаде один из нейтронов превращается в протон, и материнское ядро испускает электрон и антинейтрино. Схематически этот процесс представляется таким образом:

Электронный бета-распад может сопровождаться также гамма- излучением. Это происходит в том случае, когда в процессе распада, образуется ядро, находящееся не в основном, а в возбужденном состоянии. Примером такого распада служит превращение стронция в иттрий:

Обратный процесс превращения протона в нейтрон в свободном состоянии невозможен, поскольку масса нейтрона больше массы протона. Однако ядра, расположенные в координатах N и Z ниже линии стабильности, в результате перегруппировки нуклонов, могут перейти из менее стабильного состояния в более стабильное состояние путем замены одного протона на нейтрон. При этом протон теряет свой заряд, превратившись в нейтрон и позитрон (е +), частицу несущую положительный заряд, но обладающую массой электрона. Так как при испускании позитрона происходит захват электрона с электронной оболочки, обеспечивающий сохранение электронейтральности атома, позитронный распад может протекать в случае, если разность энергий в конечном и исходном состояниях превышает 1,02 МэВ, то есть больше массы покоя двух электронов. При позитронном распаде позитрон немедленно покидает ядро, и после замедления его масса аннигилирует вместе с массой электрона. О наличии позитронного распада свидетельствует регистрация двух гамма - квантов с энергиями 0,51 МэВ. Этот процесс идет с поглощением энергии, так как масса нейтрона больше массы протона.

При аннигиляции позитрона с электроном их масса полностью превращается в энергию двух - квантов. Эта энергия образуется за счет перестройки остального ядра:

е _ + е + 2 + 1,02 Мэв

Позитронная эмиссия очень редка у естественных радионуклидов и встречается в основном у искусственно полученных радионуклидов с помощью ускорителей частиц:

О N + e + ;Fe Mn + e + +

Если значение энергии превращения меньше 1,02 Мэв, то эмиссия позитронов не возможна. В этом случае материнский нуклид переходит в дочерний путем захвата электрона так называемого К-захвата .

Для ядер тяжелых элементов с недостатком нейтронов (нейтронодефицитное ядро), превращения протонов в нейтроны происходит только по механизму электронного К-захвата. Поскольку в атоме К-электроны в среднем находятся наиболее близко к ядру, то существует некоторая вероятность захвата ядром электрона с К - оболочки.

Так как масса нейтрона больше суммарной массы протона и электрона, для реализации этой реакции нужна дополнительная энергия. Эта энергия берется за счет увеличения энергии связи у вновь образовавшегося ядра. Для атомов тяжелых элементов К-захват более вероятен, чем позитронная эмиссия.

Захват электрона ядром всегда сопровождается рентгеновским излучением , так как на освободившееся место на нижнем энергетическом уровне сразу переходят орбитальные электроны из оболочек расположенных выше.

Кроме того, К-захват сопровождается испусканием электронов Оже с возбужденных электронных оболочек атома.

Для ядер легких элементов распространены все три варианта - распада.

Бета-распад энергетически возможен, если масса покоя системы в начальном состоянии больше ее массы покоя в конечном.

Поскольку масса покоя нейтрино (антинейтрино) равно 0, энергетические условия - превращений имеют вид:

М(Z,A) М(Z + 1), A + m e- () - распад

М(Z,A) М(Z - 1), A + m e+ (+) распад

М(Z,A) + m e М(Z - 1), A -К захват

Из этих условий видно, что К- захват энергетически более выгодный, чем позитронный распад.

Так как энергия возбуждения, которая уносится из ядер при - распаде перераспределяется между электроном и антинейтрино или между позитроном и нейтрино и подчиняется закону случайностей, - распад имеет непрерывный энергетический спектр. Сумма энергий - частицы и нейтрино (антинейтрино) всегда равна постоянной величине, характерной для данного изотопа и называется максимальной энергией - спектра.

Э. Ферми вывел эмпирическое уравнение, связывающее максимальную энергию - излучения с постоянной распада, л :

Максимальная энергия бета- частиц лежит в интервале 0,015 - 15 МэВ, а периоды полураспада изменяются от 0.3 с до 6.10 14 лет

Знаете ли Вы, в чем ложность понятия "физический вакуум"?

Физический вакуум - понятие релятивистской квантовой физики, под ним там понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. Физическим вакуумом релятивистские теоретики называют полностью лишённое вещества пространство, заполненное неизмеряемым, а значит, лишь воображаемым полем. Такое состояние по мнению релятивистов не является абсолютной пустотой, но пространством, заполненным некими фантомными (виртуальными) частицами. Релятивистская квантовая теория поля утверждает, что, в согласии с принципом неопределённости Гейзенберга, в физическом вакууме постоянно рождаются и исчезают виртуальные, то есть кажущиеся (кому кажущиеся?), частицы: происходят так называемые нулевые колебания полей. Виртуальные частицы физического вакуума, а следовательно, он сам, по определению не имеют системы отсчета, так как в противном случае нарушался бы принцип относительности Эйнштейна, на котором основывается теория относительности (то есть стала бы возможной абсолютная система измерения с отсчетом от частиц физического вакуума, что в свою очередь однозначно опровергло бы принцип относительности, на котором постороена СТО). Таким образом, физический вакуум и его частицы не есть элементы физического мира, но лишь элементы теории относительности, которые существуют не в реальном мире, но лишь в релятивистских формулах, нарушая при этом принцип причинности (возникают и исчезают беспричинно), принцип объективности (виртуальные частицы можно считать в зависимсоти от желания теоретика либо существующими, либо не существующими), принцип фактической измеримости (не наблюдаемы, не имеют своей ИСО).

Когда тот или иной физик использует понятие "физический вакуум", он либо не понимает абсурдности этого термина, либо лукавит, являясь скрытым или явным приверженцем релятивистской идеологии.

Понять абсурдность этого понятия легче всего обратившись к истокам его возникновения. Рождено оно было Полем Дираком в 1930-х, когда стало ясно, что отрицание эфира в чистом виде, как это делал великий математик, но посредственный физик , уже нельзя. Слишком много фактов противоречит этому.

Для защиты релятивизма Поль Дирак ввел афизическое и алогичное понятие отрицательной энергии, а затем и существование "моря" двух компенсирующих друг друга энергий в вакууме - положительной и отрицательной, а также "моря" компенсирующих друг друга частиц - виртуальных (то есть кажущихся) электронов и позитронов в вакууме.

Бета-распад становится возможным тогда, когда замена в атомном ядре нейтрона на протон (или, наоборот, протона на нейтрон) энергетически выгодна и получающееся новое ядро имеет меньшую массу покоя, т. е. большую энергию связи. Избыток энергии распределяется между продуктами реакции.

Бета-распад бывает трех видов:

1. Один из нейтронов (n) в ядре превращается в протон (р). При этом излучается электрон (е-) и антинейтрино (ṽ e) (см. Нейтрино, Антивещество). Это - β - -распад.

A(Z,N) → A(Z+1,N-1) + е - + ṽ e

(n → р + е - + ṽ e),

где A(Z,N) - обозначение ядра с числом протонов Z и нейтронов N. Заряд ядра увеличивается на 1. Простейший вид из всех видов β - -распада - распад свободного нейтрона, который тяжелее протона и поэтому нестабилен.

2. Протон, входящий в состав ядра, распадается на нейтрон (N), позитрон (е+) и нейтрино (v e). Это - β + -распад.

A(Z,N) → A(Z-1,N+1) + e + + v e

(p → рn + е + + v e).

Заряд ядра уменьшается на 1. Процесс может происходить только в ядре; свободный протон не распадается таким образом.

3. Наконец, ядро может захватить ближайший из атомных электронов (электронный захват) и превратиться в другое ядро с зарядом на 1 меньше:

A(Z,N) + е - → A(Z-1,N+1) + v e

(р + е - → n + v e).

β-частица при этом не излучается.

Когда физики начали изучать β-распад, о существовании нейтрино (v e или ṽ e)> обладающего огромной проникающей способностью, ничего не было известно.

Загадка, с которой столкнулись экспериментаторы,- сплошной энергетический спектр электронов, излучаемых при р-распаде. В этом процессе на долю дочернего ядра приходится ничтожная часть освобождающейся энергии. Вся она идет на электрон, и поэтому все β-частицы должны были бы иметь одинаковую энергию E 0 . А на опыте наблюдалась такая картина: испускались электроны любой энергии, вплоть до максимально возможной - E 0 .

Физики предположили, что виноват источник: р-частицы теряют свою энергию, когда проходят сквозь его материал. Для проверки этой гипотезы несколько групп экспериментаторов поставили калориметрические опыты. Делались они так: радиоактивный источник помещали в калориметр с такими толстыми стенками, чтобы β-частицы в них полностью поглощались. Это позволило измерить всю энергию, выделяющуюся за определенное время.

Потом рассчитали энергию, приходящуюся на одну β-частицу. Экспериментаторы ожидали, что она окажется близкой к E 0 , но всякий раз получали величину, приблизительно в 2 раза меньшую.

Выход из положения нашел швейцарский физик-теоретик В. Паули. Он высказал предположение, что при β-распаде испускается частица, обладающая несравненно большей проникающей способностью, чем электроны. Ее не могут задержать стенки калориметра, и она уносит с собой часть энергии. Так родилось представление о нейтрино.

Теория β-распада была создана в 1934 г. итальянским физиком Э. Ферми. В ней ученый предположил, что электрон и нейтрино рождаются в момент распада нуклона в ядре. Он ввел в теорию константу G, которая играла для β-распада такую же роль, что и заряд е для электромагнитных процессов, и вычислил ее величину на основании экспериментальных данных. Теория Ферми позволила рассчитать форму p-спектров и связать граничную энергию распада E 0 со временем жизни радиоактивного ядра. Нейтрино в этой теории имело заряд, равный нулю, и нулевую массу (во всяком случае, m v ~< m e).

В течение следующих лет теорию стремились видоизменить, дополнить и усложнить, поскольку казалось, что она слишком проста и не описывает всех опытных данных. Прошло несколько десятилетий, прежде чем физики убедились, что все эти дополнения основаны на ошибочных экспериментах, а путь, выбранный Ферми, правильный. Созданная сейчас теория объединенного слабого и электромагнитного взаимодействия включает его как первое приближение (см. Четность, Нейтрино, Слабые взаимодействия) .

Приведем некоторые данные о бета-распаде ядер.

Граничная энергия β-частиц (E 0) - от нескольких КэВ до - 17 МэВ.

Время жизни ядер по отношению к β-распа-ду -от 1,3x10 -2 с до ~2x10 13 лет.

Пробег β-частиц в легких веществах - несколько сантиметров. Они теряют свою энергию на ионизацию и возбуждение атомов.

Бе́та-распа́д (β -распад) - тип радиоактивного распада , обусловленный слабым взаимодействием и изменяющий заряд ядра на единицу, в соответствии с правилом радиоактивных смещений Содди и Фаянса без изменения массового числа . При этом распаде ядро излучает бета-частицу (электрон или позитрон), а также нейтральную частицу с полуцелым спином (электронное антинейтрино или электронное нейтрино)

Традиционно к бета-распаду относят распады двух видов:

  • ядро (или нейтрон) испускает электрон и антинейтрино - «бета-минус-распад» (β − ).
  • ядро испускает позитрон и нейтрино - «бета-плюс-распад» (β + ).

При электронном распаде возникает антинейтрино, при позитронном распаде - нейтрино. Это обусловлено фундаментальным законом сохранения лептонного заряда .

Кроме β − и β + -распадов, к бета-распадам относят также электронный захват , (К-захват) в котором ядро захватывает электрон из своей электронной оболочки и испускает электронное нейтрино. Нейтрино (антинейтрино), в отличие от электронов и позитронов, крайне слабо взаимодействует с веществом и уносят с собой часть доступной энергии распада.

Энциклопедичный YouTube

    1 / 5

    ✪ Виды распада

    ✪ Альфа- и Бета- распады

    ✪ Урок 463. Открытие естественной радиоактивности. Альфа-, бета- и гамма-излучение

    ✪ Радиоактивность Физика ЕГЭ ОГЭ Атомы альфа бетта распад

    ✪ Ядерная физика Альфа и бета распад

    Субтитры

    Все, что мы до сих пор обсуждали, изучая химию, основывалось на стабильности электронов, и на том, где они, скорее всего, находятся в устойчивых оболочках. Но если продолжить изучение атома, выяснится, что в атоме находятся и действуют не только электроны. Взаимодействия происходят в самом ядре, ему свойственна нестабильность, которую оно стремится ослабить. Это и станет темой нашего видеоурока. На самом деле, изучение этих механизмов не входит в программу по химии для первокурсников, но лишними эти знания точно не будут. Когда мы будем изучать сильные ядерные взаимодействия, квантовую физику и тому подобное, мы еще подробно рассмотрим, почему протоны, нейтроны и кварки, из которых состоят ядра атомов, взаимодействуют именно таким образом. А сейчас представим, каким образом ядро вообще может распадаться.. Начнем с пучка протонов. Я нарисую несколько. Это протоны, а тут будут нейтроны. Нарисую их каким-нибудь подходящим цветом. Серый цвет – то, что надо. Итак, вот они, мои нейтроны. Сколько у меня протонов? У меня 1, 2, 3, 4, 5, 6, 7, 8. Значит, будет 1, 2, 3, 4, 5, 6, 7, 8, 9 нейтронов. Допустим, это ядро атома. Это, кстати, самый первый ролик об атомном ядре. Вообще, нарисовать атом, на самом деле, очень трудно, ведь у него нет четко определенных границ. Электрон в любой момент времени может находиться где угодно. Но если говорить о месте нахождения электрона 90% времени, то им будет радиус или диаметр атома. Мы уже давно знаем, что ядро - это бесконечно малая часть объема той сферы, где электрон находится 90% времени. А из этого следует что практически все, что мы видим вокруг, это пустое пространство. Все это - пустое пространство. Я говорю об этом, потому что это бесконечно малое пятнышко, даже несмотря на то, что оно является очень малой долей объема атома, его масса составляет почти всю массу атома - это очень важно. Это не атомы, это не электроны. Мы проникаем в ядро. Оказывается, иногда ядро бывает нестабильно и стремится достичь более устойчивой конфигурации. Мы не будем углубляться в детали причин неустойчивости ядра. Но, просто скажу, что иногда оно испускает так, называемые альфа-частицы. Это явление называется альфа-распадом. Запишем. Альфа-распад. Ядро испускает альфа-частицу, звучит фантастично. Это просто совокупность нейтронов и протонов. А альфа-частица – это два нейтрона и два протона. Возможно, они чувствуют, что они здесь не помещаются, вот эти, например. И происходит эмиссия. Они покидают ядро. Рассмотрим, что происходит с атомом, когда случается что-то подобное. Возьмем случайный элемент, назовем его Е. У него есть P - протоны. Нарисую буквы таким же цветом, что и протоны. Итак, вот - протоны. Естественно, у элемента Е есть массовое число атома, равное сумме протонов и нейтронов. Нейтроны серые. Происходит альфа-распад, что же будет с этим элементом? Что же будет с этим элементом? Количество протонов уменьшается на два. Поэтому количество протонов составит р минус 2. И число нейтронов тоже уменьшается на два. Итак, здесь у нас р минус 2, плюс наши нейтроны минус 2, то есть, всего минус 4. Масса уменьшается на четыре, и прежний элемент превращается в новый. Помните, что элементы определяются количеством протонов. При альфа-распаде вы теряете два нейтрона и два протона, но именно протоны превращают этот элемент в другой. Если мы назовем этот элемент 1, что я и собираюсь сделать, то теперь у нас будет новый элемент, элемент 2. Смотрите внимательно. Происходит эмиссия чего-то, что имеет два протона, и два нейтрона. Поэтому его масса будет равна массе двух протонов и двух нейтронов. Что же это? Отделяется что-то, имеющее массу четыре. Что содержит два протона и два нейтрона? Сейчас у меня нет периодической системы элементов. Я забыл ее вырезать и вставить перед съемкой этого видеоролика. Но вы быстро найдете в периодической таблице элемент, имеющий два протона, и этот элемент – гелий. Его атомная масса действительно четыре. Действительно, при альфа-распаде происходит эмиссия именно ядра гелия. Это ядро гелия. Так как это ядро гелия, у него нет электронов, чтобы нейтрализовать заряд протонов, это ион. У него нет электронов. У него только два протона, поэтому он имеет заряд плюс 2. Подпишем заряд. Альфа-частица – это просто ион гелия, ион гелия с зарядом плюс 2, самопроизвольно испускаемый ядром для достижения более устойчивого состояния. Это один вид распада. Теперь другие.. Рисуем еще одно ядро. Нарисую нейтроны. Нарисую протоны. Иногда получается так, что нейтрон чувствует себя неуютно. Он каждый день смотрит на то, что делают протоны, и говорит, знаете, что? Почему-то, когда я прислушиваюсь к себе, я чувствую, что на самом деле должен быть протоном. Если бы я был протоном, все ядро было бы немного устойчивее. И что он делает, чтобы стать протоном? Помните, нейтрон имеет нейтральный заряд? Вот что он делает, он испускает электрон. Это кажется сумасшествием. Электроны в нейтронах и все такое. И я согласен с вами. Это сумасшествие. И однажды мы изучим все, что находится внутри ядра. А пока просто скажем, что нейтрон может испустить электрон. Что он и делает. Итак, вот электрон. Мы принимаем его массу за равную нулю.. На самом деле это не так, но мы говорим сейчас о единицах атомной массы. Если масса протона – один, то масса электрона в 1836 раз меньше. Поэтому мы принимаем его массу за ноль. Хоть это и не так. А его заряд – минус 1. Итак, вернемся к процессу. Нейтрон испускает электрон. Конечно, нейтрон не остается нейтральным, а превращается в протон. Это называется бета-распадом. Запишем этот вид. Бэта-распад. А бета-частица – на самом деле просто испускаемый электрон. Вернемся к нашему элементу. У него есть определенное количество протонов и нейтронов. Вместе они составляют массовое число. Что происходит, когда он подвергается бета-распаду? Изменяется ли количество протонов? Конечно, у нас на один протон больше, чем было, потому что один нейтрон превратился в протон. Количество протонов увеличилось на 1. Изменилось ли массовое число? Посмотрим. Количество нейтронов уменьшилось на один, а количество протонов увеличилось на один. Поэтому массовое число не изменилось. Оно по-прежнему составляет Р плюс N, то есть, масса остается неизменной, в отличие от ситуации с альфа-распадом, но сам элемент изменяется. Количество протонов изменяется. В результате бета-распада мы снова получаем новый элемент. Теперь другая ситуация. Допустим, один из этих протонов смотрит на нейтроны и говорит, знаете, что? Я вижу, как они живут. Мне это очень нравится. Думаю, мне было бы удобнее, а наша группа частиц внутри ядра была бы счастливее, если бы я тоже был нейтроном. Все мы находились бы в более устойчивом состоянии. И что он делает? У этого испытывающего неудобства протона есть возможность испустить позитрон, а не протон. Он испускает позитрон. А что это такое? Это частица, которая имеет точно такую же массу, как и электрон. То есть, его масса в 1836 раз меньше массы протона. Но здесь мы пишем просто ноль, потому что в единицах атомной массы она приближается к нулю. Но позитрон имеет положительный заряд. Немного путает то, что здесь все еще написано е. Когда я вижу е, я думаю, что это электрон. Но нет, эту частицу обозначают буквой е, потому что это частица того же типа, но, вместо отрицательного заряда, она имеет положительный заряд. Это позитрон. Подпишем. Начинает происходить что-то необычное с этими типами частиц и веществом, которые мы рассматриваем. Но это - факт. И если протон испускает эту частицу, то с ней практически уходит его положительный заряд, и этот протон превращается в нейтрон. Это называется эмиссией позитрона. Эмиссию позитрона представить довольно легко, В названии все сказано. Снова элемент Е, с определенным количеством протонов, и нейтронов. Каким должен быть этот новый элемент? Он теряет протон. P минус 1. Он превращается в нейтрон. То есть, количество P уменьшается на один. Количество N увеличивается на один. Поэтому масса целого атома не изменяется. Она составит P плюс N. Но у нас все еще должен получиться другой элемент, правильно? Когда происходит бета-распад, увеличивается количество протонов. Мы переместились вправо в периодической таблице, или увеличили, вы знаете, что я имею в виду. Когда происходит эмиссия позитрона, уменьшается количество протонов. Нужно это записать в обеих этих реакциях. Итак, это эмиссия позитрона, и остается один позитрон. А в нашем бета-распаде остается один электрон. Реакции записаны абсолютно одинаково. Вы знаете, что это электрон, потому что он имеет заряд минус 1. Вы знаете, что это позитрон, потому что он имеет заряд плюс 1. Остается один, последний тип распада, о котором вы должны знать. Но он не изменяет количество протонов или нейтронов в ядре. Он просто высвобождает огромное количество энергии, или, иногда, высокоэнергетический протон. Это явление называется гамма-распадом. Гамма-распад означает, что эти частицы меняют свою конфигурацию. Они немного сближаются. И сближаясь, выделяют энергию в виде электромагнитного излучения с очень маленькой длиной волны. По существу, можно называть это гамма- частицей или гамма-лучом. Это сверхвысокая энергия. Гамма-лучи очень опасны. Они могут вас убить. Все это была теория. Теперь решим пару задач и выясним, с каким типом распада мы имеем дело. Здесь у меня бериллий-7, где семь - это атомная масса. И я превращаю его в литий-7. Итак, что здесь происходит? Масса ядра бериллия остается неизменной, но количество протонов уменьшается с четырех до трех. Уменьшилось количество протонов бериллия. Общая масса не изменилась. Несомненно, это не альфа-распад. Альфа-распад, как вы знаете, это выделение гелия из ядра. Так что же выделяется? Выделяется положительный заряд, или позитрон. Здесь это показано с помощью уравнения. Это позитрон. Поэтому этот тип распада бериллия-7 до лития-7- это эмиссия позитрона. Все ясно. А теперь взглянем на следующий пример. Уран-238, распадающийся до тория-234. И мы видим, что атомная масса уменьшается на 4, и видим, что атомное число уменьшается, количество протонов уменьшается на 2. Вероятно, выделилось что-то, что имеет атомную массу четыре, и атомное число два, то есть, гелий. Значит это альфа-распад. Вот здесь – это альфа-частица. Это пример альфа-распада. Но тут не все так просто. Потому что, если из 92 протонов осталось 90 протонов, здесь осталось еще 92 электрона. Будет ли теперь заряд минус 2? И более того, гелий, который высвобождается, он же не имеет электронов. Это просто ядро гелия. Так будет ли заряд плюс 2? Задавая такой вопрос, вы будете абсолютно правы. Но на самом деле именно в момент распада у тория больше нет причин удерживать эти два электрона, поэтому эти два электрона исчезают, и торий опять становится нейтральным. А гелий очень быстро реагирует таким же образом. Ему очень нужны два электрона для устойчивости, поэтому он очень быстро захватывает два электрона и становится стабильным. Можно записать это любым способом. Рассмотрим еще один пример. Здесь у меня йод. Хорошо. Посмотрим, что происходит. Масса не изменяется. Протоны должны превратиться в нейтроны или нейтроны – превратиться в протоны. Мы видим, тут у меня 53 протона, а здесь - 54. Видимо, один нейтрон превратился в протон. Нейтрон, видимо, превратился в протон. А нейтрон превращается в протон, испуская электрон. И мы наблюдаем это во время этой реакции. Электрон высвободился. Значит, это бета-распад. Это бета-частица. Подписали. Действует та же логика. Подождите, вместо 53 стало 54 протона. Теперь, когда прибавился еще один протон, будет ли у меня положительный заряд? Да, будет. Но очень скоро – возможно, не именно эти электроны, вокруг вращается так много электронов – я захвачу электроны из какого-нибудь места, чтобы стать устойчивым, и снова обрету устойчивость. Но вы будете абсолютно правы, если зададите вопрос, не станет ли частица ионом на малую долю времени? Рассмотрим еще один пример. Радон-222 с атомным числом 86, который превращается в полоний -218, с атомным числом 84. Небольшое интересное отступление. Полоний назван так в честь Польши, потому что Мария Кюри, открывшая его, оттуда, в то время, примерно в конце 1800-х годов – Польша еще не существовала как отдельная страна. Ее территория была разделена между Пруссией, Россией и Австрией. И поляки очень хотели, чтобы люди знали – они – единый народ. Они сделали открытие, что, когда радон подвергается распаду, образуется этот элемент. И назвали его в честь своей родины, Польши. Это привилегия открытия новых элементов. Но вернемся к задаче. Итак, что произошло? Атомная масса уменьшилась на четыре. Атомное число уменьшилось на два. Еще раз повторю, видимо, высвободилась частица гелия. Ядро гелия имеет атомную массу четыре и атомное число два. Все ясно. Значит, это альфа-распад. Можно написать, что это ядро гелия. Оно не имеет электронов. Мы можем даже сразу сказать, что оно будет иметь отрицательный заряд, но затем оно его теряет. Subtitles by the Amara.org community

Механизм распада

В β − -распаде слабое взаимодействие превращает нейтрон в протон , при этом испускаются электрон и электронное антинейтрино :

n 0 → p + + e − + ν ¯ e {\displaystyle n^{0}\rightarrow p^{+}+e^{-}+{\bar {\nu }}_{e}} . p + → n 0 + e + + ν e . {\displaystyle p^{+}\rightarrow n^{0}+e^{+}+{\nu }_{e}.}

В отличие от β − -распада, β + -распад не может происходить вне ядра, поскольку масса свободного протона меньше массы нейтрона (распад мог бы идти только в том случае, если бы масса протона превосходила суммарную массу нейтрона, позитрона и нейтрино). Протон может распадаться по каналу β + -распада лишь внутри ядер, когда абсолютное значение энергии связи дочернего ядра больше энергии связи материнского ядра. Разность между двумя этими энергиями идёт на превращение протона в нейтрон, позитрон и нейтрино и на кинетическую энергию получившихся частиц. Энергетический баланс при позитронном распаде выглядит следующим образом: (M i − M f − 2m e)·c 2 = Q β , где m e - масса электрона. Как и в случае β − -распада, доступная энергия Q β распределяется между позитроном, нейтрино и ядром отдачи (на долю последнего приходится лишь малая часть); кинетическая энергия позитрона и нейтрино распределены непрерывно в пределах от 0 до Q β ; распад разрешён энергетически лишь при неотрицательном Q β .

При позитронном распаде дочерний атом возникает в виде отрицательного однозарядного иона, поскольку заряд ядра уменьшается на единицу. Один из возможных каналов позитронного распада - аннигиляция появившегося позитрона с одним из электронов оболочки.

Во всех случаях, когда β + -распад энергетически возможен (и протон является частью ядра, несущего электронные оболочки либо находящегося в плазме со свободными электронами), он сопровождается конкурирующим процессом электронного захвата , при котором электрон атома захватывается ядром с испусканием нейтрино:

p + + e − → n 0 + ν e . {\displaystyle p^{+}+e^{-}\rightarrow n^{0}+{\nu }_{e}.}

Но если разность масс начального и конечного атомов мала (меньше удвоенной массы электрона, то есть 1022 кэВ ), то электронный захват происходит, не сопровождаясь позитронным распадом; последний в этом случае запрещён законом сохранения энергии . В отличие от ранее рассмотренных электронного и позитронного бета-распада, в электронном захвате вся доступная энергия (кроме кинетической энергии ядра отдачи и энергии возбуждения оболочки E x ) уносится одной частицей - нейтрино. Поэтому нейтринный спектр здесь представляет собой не гладкое распределение, а моноэнергетическую линию вблизи Q β .

Когда протон и нейтрон являются частями атомного ядра , процессы бета-распада превращают один химический элемент в другой, соседний по таблице Менделеева . Например:

1 55 37 C s → 1 56 37 B a + e − + ν ¯ e {\displaystyle \mathrm {{}^{1}{}_{55}^{37}Cs} \rightarrow \mathrm {{}^{1}{}_{56}^{37}Ba} +e^{-}+{\bar {\nu }}_{e}} ( β − {\displaystyle \beta ^{-}} -распад, энергия распада 1175 кэВ ), 11 22 N a → 10 22 N e + e + + ν e {\displaystyle \mathrm {~_{11}^{22}Na} \rightarrow \mathrm {~_{10}^{22}Ne} +e^{+}+{\nu }_{e}} ( β + {\displaystyle \beta ^{+}} -распад), 11 22 N a + e − → 10 22 N e + ν e {\displaystyle \mathrm {~_{11}^{22}Na} +e^{-}\rightarrow \mathrm {~_{10}^{22}Ne} +{\nu }_{e}} (электронный захват).

Бета-распад не меняет число

в-распадом называется самопроизвольное превращение радиоактивного ядра в ядро-изобар или. В этом процессе один из нейтронов ядра превращается в протон или один из протонов - в нейтрон. Таким образом, в-распад является не внутриядерным, а внутринуклонным процессом. Ответственным за в-распад является слабое взаимодействие нуклонов в ядре (см. рис. 1).

Существует три вида в-распада: электронный (в--распад), позитронный (в+-распад) и электронный захват.

Электронный в-распад (в--распад). В этом случае материнское ядро испускает электрон, поэтому зарядовое число дочернего ядра увеличивается на единицу. Электронный в- распад протекает по схеме

При этом распаде наряду с дочерним ядром образуется электрон и электронное антинейтрино. Здесь мы приписали электрону зарядовое число Z=-1 и массовое число А=0, чтобы подчеркнуть сохранение электрического заряда и числа нуклонов в процессе распада.

Примером электронного в-распада может служить превращение углерода в азот:

Из приведенной схемы распада видно, что массовые числа обоих ядер одинаковы, а зарядовое число дочернего ядра на единицу больше, чем у материнского.

В основе электронного в-распада, как уже отмечалось, лежит превращение в ядре нейтрона в протон:

Поэтому можно определить в -распад как процесс самопроизвольного превращения нейтрона в протон внутриатомного ядра.

Дочернее ядро, образующееся при в-распаде, может находиться в возбужденном состоянии. При переходе ядра в основное состояние испускается у-излучение, поэтому в-распад, так же как и б-распад, может сопровождаться испусканием г-квантов.

Рис.4.Энергетический спектр электронов при в--распаде

Как показывают экспериментальные исследования, электроны, образующиеся при в--распаде, имеют широкий энергетический спектр от нуля до максимального значения Еmах (рис. 4). Величина dN, определяет число электронов, энергия которых заключена в интервале от Е до E + dE. Площадь под кривой (см. рис. 4) численно равна полному числу электронов, испускаемых радиоактивным препаратом в единицу времени. Энергия Еmах определяется разностью значений массы материнского ядра и массы продуктов распада -- электрона и дочернего ядра (см. выражение (1))

Первоначально, до открытия нейтрино, казалось, что в--распад протекает с нарушением закона сохранения энергии. Действительно, если бы материнское ядро распадалось только на дочернее ядро и электрон, то энергия электрона, согласно (1), не могла быть меньше Еmах. Для того чтобы объяснить "исчезновение" энергии (?Е = Еmах -Е), В. Паули в 1932 г. выдвинул гипотезу, согласно которой при в--распаде испускается еще одна частица, которая и уносит энергию?Е. Так как эта частица никак себя не проявляла, то следовало предположить, что она электронейтральна и обладает очень малой массой. Эта частица, названная Э. Ферми нейтрино, что дословно означает "маленький нейтрон", была экспериментально обнаружена лишь в 1956 г. За проведение экспериментальных исследований по обнаружению нейтрино Ф. Райнес и К. Коуэн в 1995 г. были удостоены Нобелевской премии по физике.

Установлено, что существует несколько типов нейтрино: электронное ve, мюонное vм, тау-лептонное vф и их античастицы.

Тип нейтрино определяется заряженной частицей, вместе с которой нейтрино рождается и с которой взаимодействует. в--распад сопровождается испусканием электронного антинейтрино ve. Именно эта частица и приведена в записанных выше схемах распада. Вопрос о массе нейтрино рассмотрен в (рис.1.).

Позитронный в-распад (в+-распад). В случае позитронного в-распада ядро испускает позитрон, в результате чего его зарядовое число Z уменьшается на единицу. Позитронный в-распад осуществляется по схеме

В качестве примера приведем превращение азота в углерод

Позитронный в-распад сопровождается испусканием позитрона е+ и нейтрино ve, т. е. тех частиц, которые представляют собой античастицы по отношению к частицам, испускаемым при электронном в-распаде (е -- и ve).

В основе в+-распада, как уже отмечалось, лежит превращение в ядре протона в нейтрон:

Поскольку масса протона меньше массы нейтрона, то для свободного протона такой процесс невозможен по энергетическим соображениям (см. выражение (1)). Однако протон, находящийся в ядре, может получать необходимую энергию от других нуклонов ядра.

Электронный захват. Третий вид в-распада -- электронный захват -- представляет собой поглощение ядром одного из электронов электронной оболочки своего атома. Чаще всего поглощается электрон из K-оболочки, поэтому электронный захват называют еще К-захватом. Реже поглощаются электроны из L- или М-оболочек.

В результате К-захвата происходит превращение одного из протонов ядра в нейтрон, сопровождающееся испусканием нейтрино:

Схема К-захвата имеет следующий вид:

На освободившееся в результате К-захвата место в электронной оболочке атома могут переходить электроны из вышележащих слоев, в результате чего возникает рентгеновское излучение. При исследовании этого излучения был открыт К-захват американским физиком Л.Альваресом в 1937 г.

Примером электронного захвата может служить превращение калия в аргон

Подводя итог описанию б- и в-распадов, следует отметить, что б-распад наблюдается только у тяжелых ядер и некоторых ядер редкоземельных элементов. Напротив, в-активные ядра более многочисленны. Практически для каждого атомного номера Z существуют нестабильные изотопы, обладающие в±-активностью.

Энергия, выделяющаяся при в-распаде, лежит в пределах от 0,0186 МэВдо 16 МэВ. Период полураспада в-активных ядер меняется от 10-2с (для) до 4*1012 лет (для).

Спонтанное деление тяжелых ядер.

Самопроизвольное деление тяжелых ядер было впервые обнаружено советскими физиками Г.Н. Флеровым и К.А. Петржаком в 1940 г. у ядер урана. Оно осуществляется по схеме т. е. ядро урана распадается на ядра ксенона и стронция с испусканием трех нейтронов.

Спонтанное деление, так же как и б-распад, происходит за счет туннельного эффекта. Пользуясь капельной моделью ядра, т. е. считая, что ядро подобно капле жидкости, можно выделить стадии, которые проходит ядро в процессе деления (рис. 5, а). Соответствующий вид потенциальной энергии ядра U для различных деформаций ядра представлен на рис. 5,б.

Рис. 5. Спонтанное деление тяжелого ядра: а -- схема деления; б -- потенциальный барьер деления

Как и при всяком туннельном эффекте, вероятность спонтанного деления очень сильно (по экспоненциальному закону) зависит от высоты барьера деления?U. Для изотопов урана и соседних с ним элементов высота барьера деления составляет?U ? 6 МэВ.

Спонтанное деление является основным каналом распада сверхтяжелых ядер. Осколки деления ядер урана U и плутония Рu асимметричны по массе. С ростом массового числа распадающегося ядра осколки деления становятся более симметричными.