График ван дер ваальса. Уравнение Ван–дер–Ваальса

Газовые законы, рассмотренные в предыдущих разделах, точно выполняются только для идеальных газов, которые не конденсируются при охлаждении их вплоть до абсолютного нуля температуры.

Свойства большинства газов близки к свойствам идеального газа , когда они находятся при температурах, достаточно далеких от точки конденсации, т. е. когда между молекулами отсутствует взаимодействие и когда собственный объем молекул газа мал по сравнению с объемом газа.

Вблизи точки конденсации (при высоком давлении и низкой температуре) свойство газов значительно отличается от свойств идеального газа. В этих случаях говорят о реальных газах.

Уравнение состояния для 1-го моля идеального газа (V m - молярный объем) видоизменяется в случае реальных газов.

Для реальных газов необходим учет собственного объема молекул. Наличие сил отталкивания, которые противодействуют проникновению в занятый молекулой объем других молекул , сводится к тому, что фактический свободный объем, в котором могут двигаться молекулы реального газа, будет не V m , а V m - b , b - объем, занимаемый самими молекулами. Объем b равен учетверенному собственному объему молекул.

Действие сил притяжения газа приводит к появлению дополнительного давления на газ, называемого внутренним давлением. По вычислениям Ван-дер-Ваальса, внутреннее давление обратно пропорционально квадрату молярного объема, т. е.

где a - постоянная Ван-дер-Ваальса , характеризующая силы межмолекулярного притяжения.

Вводя поправки в уравнение для идеального газа, получим уравнение Ван-дер-Ваальса для 1-го моля газа

Учитывая, что , получим уравнение для произвольного количества вещества :

(9.46)

Поправки Ван-дер-Ваальса (a и b ) являются постоянными для каждого газа величинами. Для их определения записывают уравнения для двух известных из опыта состояний газа и решаются относительно a и b .

Уравнение (9.45) можно записать в виде:

При заданных p и T - это уравнение третьей степени относительно V m , следовательно, оно может иметь либо три вещественных корня, либо один вещественный и два мнимых, причем физический смысл имеют лишь вещественные положительные корни.

Изотермами Ван-дер-Ваальса называются кривые зависимости p от V m при заданных T, определяемые уравнением Ван-дер-Ваальса для моля газа .

При некоторой температуре T k - критической температуре - на изотерме (рис. 9.11) только одна точка перегиба (в этой точке касательная к ней параллельна оси абсцисс). Точка K - критическая точка , соответствующие этой точке объем V k и давление p k называются также критическими . Изотерма при T k называется критической изотермой .


При высокой температуре (T > T k ) изотерма реального газа отличается от изотермы идеального газа только некоторым искажением ее формы, оставаясь монотонно спадающей кривой. При низкой температуре (T) изотермы имеют волнообразный участок, сначала монотонно опускаясь вниз, затем монотонно поднимаясь вверх и снова монотонно опускаясь.

Изотермам при низкой температуре (T < T k ) одному значению давления например, p 1 соответствует три значения объема V 1 , V 2 и V 3 , а при T > T k — одно значение объема. В критической точке все три объема (три корня) совпадают и равны V k .

Рассмотрим изотерму при T < T k на рис. 9.12.

Рис. 9.12 Рис. 9.13

На участках 1-3 и 5-7 при уменьшении объема V m давление p возрастает. На участке 3-5 сжатие вещества приводит к уменьшению давления; практика же показывает, что такие состояния в природе не осуществляются. Наличие участка 3-5 означает, что при постепенном изменении объема вещество не может оставаться все время в виде однородной среды; в некоторый момент должно наступить скачкообразное изменение состояния и распад вещества на две фазы. Таким образом, истинная изотерма имеет вид ломанной линии 7-6-2-1. Часть 7-6 отвечает газообразному состоянию, а часть 2-1 — жидкому. В состояниях, соответствующих горизонтальному участку изотермы 6-2, наблюдается равновесие жидкой и газообразной фаз вещества.

Если через крайние точки горизонтальных участков семейства изотерм провести линию, то получится колокообразная кривая (рис. 9.13), ограничивающая область двухфазных состояний вещества. Эта кривая и критическая изотерма делят диаграмму p , V m под изотермой на три области: под колокообразной кривой располагается область двухфазных состояний (жидкость и насыщенный пар ), слева от нее находится область жидкого состояния, а справа - область пара . Пар - вещество, находящееся в газообразном состоянии при температуре ниже критической. Насыщенный пар - пар, находящийся в равновесии со своей жидкостью.

Задачи к главам 8, 9

1. Рассмотрим модель идеального газа, заключенного в сосуд. Завышены или занижены по сравнению с реальным газом (при заданных V и Т ) значения: а) внутренней энергии; б) давления газа на стенку сосуда?

2. Внутренняя энергия некоторого газа 55 МДж, причем на долю энергии вращательного движения приходится 22 МДж. Сколько атомов в молекуле данного газа?

3. Молекулы какого из перечисленных газов, входящих в состав воздуха, в равновесном состоянии обладают наибольшей средней арифметической скоростью? 1)N 2 ; 2) О 2 ; 3) H 2 ; 4) CO 2 .

4. Некоторый газ с неизменной массой переводится из одного равновесного состояния в другое. Изменяется ли в распределении молекул по скоростям: а) положение максимума кривой Максвела; б) площадь под этой кривой?

5. Объем газа увеличивается, а температура уменьшается. Как изменяется давление? Масса постоянна.

6. При адиабатном расширении газа объем его изме-няется от V 1 до V 2 . Сравнить отношения давлений (p 1 /p 2 ), если газ: а) одноатомный; б) двухатомный.

7. Аэростат с эластичной герметической оболочкой поднимается в атмосфере. Температура и давление воздуха уменьшаются с высотой. Зависит ли подъемная сила аэростата: а) от давления воздуха; б) от температуры?

8. На рисунке изображены адиабаты для двух газов H 2 и Ar. Указать какие графики соответствуют H 2 . 1)I, III; 2)I, IV; 3)II, III; 4)II,IV.

9. Сравнить работы расширения газа при изотермическом изменении объема от 1 до 2 м 3 и от 2 до 4 м 3 .

10. Газ, расширяясь, переходит из одного и того же состояния с объемом V 1 до объема V 2: а) изобарно; б) адиабатно; в) изотермически. В каких процессах газ совершает наименьшую и наибольшую работы?

11. Какой из указанных газов при комнатной температуре имеет наибольшую удельную теплоемкость?

1) O 2 ; 2) H 2 ; 3) He; 4) Ne; 5) I 2 .

12. Как изменяется внутренняя энергия газа в процессах расширения: а) в изобарном; б) в адиабатном?

13. Дан неизвестный газ. Можно ли узнать, какой это газ, если заданны:

а) p , V , T , m ; б) p , T , r; в) g, С V ? К газу применима классическая теория теплоемкостей.

14. Определить знаки молярной теплоемкости газа (m =const, молекулы газа жесткие) в процессе, для которого T 2 V= const, если газ: а) одноатомный; б) двухатомный.

15. Перейдем от модели идеального газа к модели, в которой учитываются силы притяжения между молекулами. Как изменяются молярные теплоемкости C V и C p при заданных V и T ?

16. Идеальный газ, содержащий N молекул, расширяется при постоянной температуре. По какому закону увеличивается число микросостояний газа w ? 1) w ~V ; 2) w ~V N ; 3) w ~ lnV ; 4) не приведено верного соотношения.

Наиболее известным уравнением состояния реальных газов, учитывающим собственный объем молекул газа и их взаимодействие, является уравнение (1873г.) нидерландского физика И.Д. Ван-дер-Ваальса (1837–1923). Рассмотрим коротко вывод этого уравнение.

Конечный объем (размеры) молекул увеличивает давление реального газа по сравнению с ИГ, т.к. передача импульса стенкам через пространство сосуда осуществляется быстрее, чем точечными молекулами вследствие прохождения ими между столкновениями меньшего пути. Учитывают только (силы отталкивания) парные столкновения молекул – столкновение двух молекул, когда остальные на них не действуют. Вероятностью и влиянием одновременных тройных, четверных и т.д. столкновений пренебрегают. При расчете давления можно считать, что одна молекула остается неподвижной, а другая движется с удвоенной кинетической энергией. При столкновении центры молекул могут сблизиться на расстояние, меньшее d – диаметр молекулы, поэтому можно считать неподвижную молекулу окруженной сферой ограждения радиуса d , а движущуюся молекулу точечной. Если применить такое приближение к газу из N молекул, то половина молекул N/2 будет покоится (окружена сферами ограждения), а другая половина может рассматриваться как газ из N 1 =N/ 2с температурой T 1 =2T . Этому газу был бы доступен объем сосуда V за исключением объема b всех сфер ограждения N/ 2 покоящихся молекул, т.е. V–b . Тогда согласно уравнению (9.12), давление, оказываемое этими молекулами на стенку сосуда, имеет вид

или для одного моля газа .

Очевидно, что объем b приблизительно равен учетверенному объему всех молекул газа (рис. 13.2). Учтем теперь действие сил притяжения между молекулами газа. Когда молекула находится внутри вещества (газа), то силы притяжения со стороны остальных молекул со всех сторон примерно скомпенсированы. Если же молекула находится в поверхностном слое, то появляется некомпенсированная сила притяжения F , направленная от поверхности внутрь газа. Под действием этих сил молекула может вообще не долететь до стенки сосуда, а отразиться от поверхностного слоя вещества. Действие сил притяжения создает добавочное – внутреннее или молекулярное давление P i ~N сл F , где N сл – число молекул в приповерхностном (пристеночном) слое. Величины N сл и F прямо пропорциональны плотности и обратно пропорциональны объему газа. Для одного моля газа P i =а/V m 2 и реальное давление газа равно , где Р – давление ИГ. Для неплотных газов поправки на силы отталкивания и притяжения можно вводить независимо, тогда обобщая, получим

(13.2)

или для произвольного количества вещества с учетом V =nV m :

. (13.3)

Уравнение (13.3)– уравнение Ван-дер-Ваальса , a и b – константы, поправки Ван-дер-Ваальса.

Уравнение (13.2), рассматриваемое как уравнение для определения объема при данных Т и Р , есть уравнение третьей степени, в преобразованном виде оно имеет вид

. (13.4)

Так как уравнение третьей степени с вещественными коэффициентами может иметь либо один вещественный корень и два комплексно сопряженных, либо три вещественных корня, то на плоскости PV прямая, параллельная оси V , может пересекать изотерму либо в трех точках, либо в одной. Построение по точкам изотермы Ван-дер-Ваальса приводит к семейству кривых, изображенных на рис. 13.3 (теоретически Ван-дер-Ваальс, экспериментально Т. Эндрюс (1813–1885) для СО 2 ).

Левая, круто спадающая ветвь соответствует малому изменению объема при изменении давления, что характерно для жидкого состояния вещества. Правая пологая ветвь соответствует значительному изменению объема при изменении давления, что соответствует газообразному состоянию вещества.

Переход из жидкого в газообразное состояние и обратно происходит не вдоль изотермы Ван-дер-Ваальса, а вдоль изобары АЕ , которая одновременно является и изотермой реального газа. При этом площади фигур АВС и СDЕ равны (правило Максвелла ). Точки изотермы А и Е изображают двухфазные состояния вещества, а между ними существуют одновременно две фазы. Чем ближе изображающая точка G к А , тем больше в системе жидкости, чем ближе к Е – тем больше пара. Если обозначить максимальный объем моля жидкости и минимальный объем пара в системе при температуре Т через V 1 и V 2 соответственно, а объем двухфазной области в точке G через V 0 , то , где х – мольная доля жидкости в состоянии G ; отсюда, зная объем V 0 , можно найти и долю x жидкости. Участки АВ и изотермы Ван-дер-Ваальса изображают метастабильные состояния вещества: переохлажденную жидкость и пересыщенный пар , которые могут существовать при известных условиях (при очень медленном квазиравновесном проведении процесса и тщательной подготовки, например, удалении всех загрязнений из объема нагреваемой жидкости и со стенок сосуда, т.к. процесс кипения начинается легче на посторонних частицах – включениях). Участок ВD соответствует абсолютно неустойчивым (рост давления при росте объема) состояниям вещества и ни при каких условиях не реализуется. При достаточно низких температурах участок АВС может опускаться ниже оси OV , что адекватно отрицательному давлению, соответствующему состоянию растянутой жидкости (за счет действия сил поверхностного натяжения).

С ростом температур область горбов и впадин на изотерме Ван-дер-Ваальса уменьшается и при температуре Т к – критической температуре – превращается в точку перегиба с горизонтальной касательной. Для этой точки уравнение (13.4) имеет три одинаковых корня и принимает вид . Критические параметры данного газа определяют по формулам

Критические явления

Изотерма при температуре Т с играет особую роль в теории состояния вещества. Изотерма, соответствующая температуре ниже Т с> ведет себя так, как уже описано: при определенном давлении газ конденсируется в жидкость, которую можно различать по наличию поверхности раздела. Если же сжатие осуществлять при Т с, то поверхность, разделяющая две фазы, не появляется, а точка конденсации и точка полного перехода в жидкость сливаются в одну критическую точку газа. При температуре выше Т с газ невозможно обратить в жидкость никаким сжатием. Температура, давление и мольный объем в критической точке называются критической температурой Т с, критическим давлением р с и критическим мольным объемом V c вещества. Собирательно параметры р с, V c , и Т с называются критическими константами данного газа (табл. 10.2).

При Т>Т С образец представляет собой фазу, полностью занимающую объем содержащего ее сосуда, т.е. по определению является газом. Однако плотность этой фазы может быть значительно большей, чем это типично для газов, поэтому обычно предпочитают название "сверхкритический флюид" (supercritical fluid). При совпадении точек Т с и Р с жидкость и газ неразличимы.

Таблица 10.2

Критические константы и температуры Бойля

То К

Р с, бар

V c , мл моль -1

Т B К

т B /т с

В критической точке изотермический коэффициент сжимаемости

равен бесконечности, поскольку

Поэтому вблизи критической точки сжимаемость вещества так велика, что ускорение силы тяжести приводит к значительным различиям плотности в верхней и нижней частях сосуда, достигающим 10% в столбике вещества высотой всего несколько сантиметров. Это затрудняет определение плотностей (удельных объемов) и, соответственно, изотерм р - V вблизи критической точки. В то же время критическую температуру можно определить весьма точно как такую температуру, при которой поверхность, разделяющая газообразную и жидкую фазы, исчезает при нагревании и вновь появляется при охлаждении. Зная критическую температуру, можно определить критическую плотность (и, соответственно, критический мольный объем), пользуясь эмпирическим правилом прямолинейного диаметра (правило Кальете Матиаса), согласно которому средняя плотность жидкости и насыщенного пара является линейной функцией температуры:

(10.2)

где A и В - постоянные для данного вещества величины. Экстраполируя прямую средней плотности до критической температуры, можно определить критическую плотность. Высокая сжимаемость вещества вблизи критической точки приводит к росту спонтанных флуктуаций плотности, которые сопровождаются аномальным рассеянием света. Это явление называется критической опалесценцией.

Уравнение Ван-дер-Ваальса

Уравнение состояния и явления переноса в реальных газах и жидкостях тесно связаны с силами, действующими между молекулами. Молекулярно-статистическая теория, связывающая общие свойства с межмолекулярными силами, сейчас хорошо разработана для разреженных газов и в меньшей степени - для плотных газов и жидкостей. Вместе с тем измерение макроскопических свойств позволяет в принципе определить закон, по которому действуют силы между молекулами. Более того, если вид взаимодействия определен, то становится возможным получить уравнение состояния или коэффициенты переноса для реальных газов.

Для идеальных газов уравнение состоянияили

Это соотношение совершенно точно в том случае, когда газ весьма разрежен или его температура сравнительно высока. Однако уже при атмосферных давлении и температуре отклонения от этого закона для реального газа становятся ощутимыми.

Предпринималось много попыток для учета отклонений свойств реальных газов от свойств идеального газа путем введения различных поправок в уравнение состояния идеального газа. Наибольшее распространение вследствие простоты и физической наглядности получило уравнение Ван- дер-Ваальса (1873).

Ван-дер-Ваальс сделан первую попытку описать эти отклонения, получив уравнения состояния для реального газа. Действительно, если уравнение состояния идеального газа pV = RT применить к реальным газам, то, во-первых, под объемом, могущим изменяться до пуля, необходимо понимать объем межмолекулярного пространства, так как только этот объем, как и объем идеального газа, может уменьшаться до нуля при неограничeнном возрастании давления.

Первая поправка в уравнении состояния идеального газа рассматривает собственный объем, занимаемый молекулами реального газа. В уравнении Дюпре (1864)

(10.3)

постоянная b учитывает собственный мольный объем молекул.

При понижении температуры мeжмолeкулярное взаимодействие в реальных газах приводит к конденсации (образованию жидкости). Межмолекулярное притяжение эквивалентно существованию в газе некоторого внутреннего давления (иногда его называют статическим давлением). Изначально величина была учтена в общей форме в уравнении Гирна (1865)

Й. Д. Ван-дер-Ваальс в 1873 г. дал функциональную интерпретацию внутреннего давления. Согласно модели Ван-дер-Ваальса силы притяжения между молекулами (силы Ван-дер-Ваальса) обратно пропорциональны шестой степени расстояния между ними или второй степени объема, занимаемого газом. Считается также, что силы притяжения суммируются с внешним давлением. С учетом этих соображений уравнение состояния идеального газа преобразуется в уравнение Ван-дер-Ваальса:

(10.5)

или для 1 моля

(10.6)

Значения постоянных Ван-дер-Ваальса а и b, которые зависят от природы газа, но не зависят от температуры, приведены в табл. 10.3.

Уравнение (10.6) можно переписать так, чтобы выразить в явном виде давление

(10.7)

или объем

(10.8)

Таблица 10.3

Постоянные Ван-дер-Ваальса для различных газов

а,

л 2 бар моль -2

ь,

см 3 моль -1

а,

л 2 бар моль -2

ь,

см 3 моль -1

Уравнение (10.8) содержит объем в третьей степени и, следовательно, имеет три действительных корня, или один действительный и два мнимых.

При высоких температурах уравнение (10.8) имеет один действительный корень, и по мере повышения температуры кривые, вычисленные по уравнению Ван-дер-Ваальса, приближаются к гиперболам, соответствующим уравнению состояния идеального газа.

На рис. 10.4 приведены изотермы, вычисленные по уравнению Ван-дер- Ваальса для диоксида углерода (значения констант а и b взяты из табл. 10.3). На рисунке показано, что при температурах ниже критической (31,04°С) вместо горизонтальных прямых, соответствующих равновесию жидкости и пара, получаются волнообразные кривые 1-2-3-4-5 с тремя действительными корнями, из которых только два, в точках 1 и 5, физически осуществимы. Третий корень (точка 3) физически не реален, поскольку находится на участке кривой 2-3-4, противоречащем условию стабильности термодинамической системы -

Рис. 10.4. Изотермы Ван-дер-Ваальса для С0 2

Состояния на участках 1-2 и 5-4 , которые отвечают переохлажденному пару и перегретой жидкости, соответственно, являются неустойчивыми (метастабильиыми) и могут быть лишь частично реализуемы в специальных условиях. Так, осторожно сжимая пар выше точки 1 (см. рис. 10.4), можно подняться по кривой 1-2. Для этого необходимо отсутствие в паре центров конденсации, и в первую очередь пыли. В этом случае пар оказывается в пересыщенном, т.е. переохлажденном состоянии. И наоборот, образованию капелек жидкости в гаком паре способствуют, например, попадающие в него ионы. Это свойство пересыщенного пара используется в известной камере Вильсона (1912), применяемой для регистрации заряженных частиц. Движущаяся заряженная частица, попадая в камеру, содержащую пересыщенный пар, и соударяясь с молекулами, образует на своем пути ионы, создающие туманный след - трек, который фиксируется фотографически.

Согласно правилу Максвелла (the Maxwell construction ), которое имеет теоретическое обоснование, для того, чтобы расчетная кривая соответствовала экспериментальной равновесной изотерме, нужно вместо кривой 1-2-3-4-5 провести горизонтальную прямую 1-5 так, чтобы площади 1-2-3-1 и 3-4-5-3 были равны. Тогда ордината прямой 1-5 будет равна давлению насыщенного пара, а абсциссы точек 1 и 5 - мольным объемам пара и жидкости при данной температуре.

По мере повышения температуры все три корня сближаются, и при критической температуре Т с становятся равными. В критической точке изотерма Ван-дер-Ваальса имеет точку перегиба

с горизонтальной касательной

(10.9)

(10.10)

Совместное решение этих уравнений дает

что позволяет определять константы уравнения Ван-дер-Ваальса из критических параметров газа. Соответственно, согласно уравнению Ван-дер- Ваальса, критический фактор сжимаемости Z c для всех газов должен быть равен

Из табл. 10.2 очевидно, что хотя значение Z c для реальных газов приблизительно постоянно (0,27- 0,30 для неполярных молекул), оно все же заметно меньше вытекающего из уравнения Ван-дер-Ваальса. Для полярных молекул наблюдается еще большее расхождение.

Принципиальное значение уравнения Ван-дер-Ваальса определяется следующими обстоятельствами:

  • 1) уравнение было получено из модельных представлений о свойствах реальных газов и жидкостей, а не явилось результатом эмпирического подбора функции /(/?, V Т), описывающей свойства реальных газов;
  • 2) уравнение долго рассматривалось как некоторый общий вид уравнения состояния реальных газов, на основе которого было построено много других уравнений состояния (см. ниже);
  • 3) с помощью уравнения Ван-дер-Ваальса впервые удалось описать явление перехода газа в жидкость и проанализировать критические явления. В этом отношении уравнение Ван-дер-Ваальса имеет преимущество даже перед более точными уравнениями в вириальной форме - см. выражения (10.1), (10.2).

Причиной недостаточной точности уравнения Ван-дер-Ваальс считал ассоциацию молекул в газовой фазе, которую не удается описать, учитывая зависимость параметров а и b от объема и температуры, без использования дополнительных постоянных. После 1873 г. сам Ван-дер-Ваальс предложил еще шесть вариантов своего уравнения, последнее из которых относится к 1911 г. и содержит пять эмпирических постоянных. Две модификации уравнения (10.5) предложил Клаузиус, и обе они связаны с усложнением вида постоянной Ь. Больцман получил три уравнения этого типа, изменяя выражения для постоянной а. Всего известно более сотни подобных уравнений, отличающихся числом эмпирических постоянных, степенью точности и областью применимости. Выяснилось, что ни одно из уравнений состояния, содержащих менее пяти индивидуальных постоянных, не оказалось достаточно точным для описания реальных газов в широком диапазоне р, V ", Т, и все эти уравнения оказались непригодными в области конденсации газов. Из простых уравнений с двумя индивидуальными параметрами неплохие результаты дают уравнения Дитеричи и Бертло.

Изотермы, построенные при одной и той же температуре для разных газов, выглядят, конечно, по-разному, потому что константыаи и связанные с ними критические величины и Тк различны для разных газов. Напомним, что изотермы идеальных газов не зависят от индивидуальных свойств газов (если изотермы строятся для одного моля).

Можно, однако, и для неидеальных газов написать уравнение изотермы так, чтобы оно не зависело от природы газа, т. е. было универсальным. Для этого нужно, чтобы параметры состояния газа находились в одинаковых отношениях к соответствующим критическим параметрам. Другими словами, любые газы с одинаковыми (или, как говорят, соответственными) отношениями

будут описываться идентичными уравнениями. Безразмерные параметры и называются приведенными параметрами.

Подставим в уравнение Ван-дер-Ваальса

вместо соответственно выразив и по уравнениям (67.2). Тогда получим:

В этом уравнении не содержатся константы, характеризующие отдельное вещество. Поэтому оно является универсальным уравнением, справедливым для всех веществ.

Уравнение (70.1) называется приведенным уравнением состояния. Из него следует, что если вещества обладают двумя одинаковыми приведенными параметрами из трех, то и третий параметр тоже одинаков для этих веществ. Этот закон носит название закона соответственных состояний. Он выражает тот факт, что, изменяя масштаб, которым измеряются две из трех величин (например,

И V), характеризующих состояние вещества, т. е. используя приведенные параметры, можно совместить изотермы всех веществ.

Закон соответственных состояний тоже является приближенным, хотя его точность несколько выше точности самого уравнения Ван-дер-Ваальса, ибо он не зависит от конкретного вида уравнения состояния.

С помощью закона соответственных состояний можно вычислить неизвестные изотермы различных газов, если известны их критические параметры и измерены изотермы других газов.

Уравнение Ван-дер-Ваальса. Уравнение состояния реальных газов

Учет конечных размеров молекул и сил притяжения между ними позволяет получить уравнение состояния реальных газов из уравнений Клапейрона-Менделеева путем внесения поправки к давлению и поправки к объему:

Уравнение Ван-дер-Ваальса, записанное для 1 моль газа.

Поправка 6, внесенная к объему, учитывает объем, занимаемый молекулами реального газа, и мертвое пространство, т. е. объем зазоров между молекулами при их плотной упаковке.

Поправка к давлению учитывает силы взаимодействия между молекулами реальных газов. Эта поправка представляет собой внутреннее давление, возникающее из-за взаимного притяжения между молекулами. Воздействие молекул друг на друга осуществляется в пределах радиуса молекулярного действия. Сила притяжения двух элементарных объемов реального газа, имеющих размер порядка радиуса молекулярного действия, пропорциональна концентрации газа как одного, так и другого объема, т. е. пропорциональна квадрату концентрации, а следовательно, и квадрату плотности, т. е. обратно пропорциональна квадрату объема:

[п - концентрация, р - плотность].

Таким образом, общее давление в реальном газе складывается из внешнего и внутреннего давлений:

Иоханнес Дидерик Ван-дер-Ваал ьс (1837-1923) - нидерландский физик.

Работы посвящены молекулярной физике и изучению низкотемпературных явлений. В 1910 г. за работы, содержащие уравнения агрегатных состояний газов и жидкостей, удостоен Нобелевской премии. Разработал теорию бинарных смесей и термодинамическую теорию капиллярности. Исследования относятся также к электролитической диссоциации и гидростатике.

Константы а и Ь могут быть определены для каждого газа опытным путем по критическим параметрам.

Учитывая большое значение уравнения Ван-дер-Ваальса, остановимся на его характеристике более подробно. Рассмотрим графическое изображение изотерм Ван-дер-Ва-альса на диаграмме (рис. 2.24).

Как видно из диаграммы, вид изотерм зависит от температуры, при которой протекает изотермический процесс. На изотерме одному значению давления р соответствуют три значения объема.

Для изотермы характерно наличие точки перегиба, изотерма имеет вид плавной кривой, совпадающей с изотермой для идеального газа.

Уравнение Ван-дер-Ваальса - уравнение третьей степени относительно объема У, поэтому оно имеет или три вещественных корня (при Т < Гц), или один вещественный и два комплексно-сопряженных, не имеющих физического смысла (при Т> TJ корня, т. е. при температуре ниже Тк одному значению давления соответствуют три значения объема, при температуре выше Тк одному значению давления соответствует одно значение объема. Отсюда следует, что при температуре выше Тж вещество находится в однофазном газообразном состоянии, а при температуре ниже Тк вещество одновременно находится в двух фазовых состояниях.

Сравнение изотерм Ван-дер-Ваальса с экспериментальными

Физическая сущность уравнения Ван-дер-Ваальса выясняется при рассмотрении экспериментальных изотерм, полученных в 1868 г. Т. Эндрюсом при исследовании углекислоты (рис. 2.25).

Как показывают экспериментальные изотермы, при переход вещества из одной фазы в другую совершается при постоянном давлении р (прямая АВ на рис. 2.25). Если из исследуемой жидкости предварительно удалить воздух и различные примеси, то экспериментально можно обнаружить участок изотермы АВ (см. рис. 2.24). Участок изотермы АВ описывает перегретую жидкость, т. е. такую жидкость, которая при температуре кипения некоторое время не переходит в пар, расширяясь по кривой АВ.

Участок изотермы ED (см. рис. 2.24) описывает перегретый пар. Этот участок можно обнаружить экспериментально, если пар очистить от центров конденсации. Участки изотерм АВ и ED (см. рис. 2.24) соответствуют неустойчивому состоянию системы, малейшее возмущение вызывает переход сАВиЕйш прямую АЕ. Участок изотермы BCD (см. рис. 2.24) экспериментально обнаружить не удалось.

По мере повышения температуры горизонтальные участки изотерм (линия конденсации АВ) (рис. 2.25) становятся все более короткими, при некоторой температуре линия конденсации исчезает, т. е. начиная с температуры состояние вещества становится однофазным; температуру Г„ называют критической. Это наибольшая температура, при которой газ может быть еще превращен в жидкость. На изотерме, соответствующей критической температуре, точки А и В сливаются в одну точку К, характеризующуюся такими координатами: VK - критический объем, рк - критическое давление.

В критической точке все три корня уравнения (2.108) должны совпадать. Из этого условия получают значения критических параметров:

Если на различных изотермах соединить все точки, при которых начинается процесс кипения, пунктирной линией (рис. 2.25), то эта линия разделит диаграмму р, V на три области. Справа и слева от этой линии вещество находится в однофазном состоянии, справа и выше изотермы Тк - газообразное, слева - жидкое, внутри очерченной области - двухфазовое состояние жидкость - пар.