Энергетический уровень атома: строение и переходы. Внешние энергетические уровни: особенности строения и их роль во взаимодействиях между атомами Число занятых электронами энергетических уровней

Е.Н.ФРЕНКЕЛЬ

Самоучитель по химии

Пособие для тех, кто не знает, но хочет узнать и понять химию

Часть I. Элементы общей химии
(первый уровень сложности)

Продолжение. Начало см. в № 13, 18, 23/2007

Глава 3. Элементарные сведения о строении атома.
Периодический закон Д.И.Менделеева

В с п о м н и т е, что такое атом, из чего состоит атом, изменяется ли атом в химических реакциях.

Атом – это электронейтральная частица, состоящая из положительно заряженного ядра и отрицательно заряженных электронов.

Число электронов в ходе химических процессов может изменяться, но заряд ядра всегда остается неизменным . Зная распределение электронов в атоме (строение атома), можно предсказать многие свойства данного атома, а также свойства простых и сложных веществ, в состав которых он входит.

Строение атома, т.е. состав ядра и распределение электронов вокруг ядра, несложно определить по положению элемента в периодической системе.

В периодической системе Д.И.Менделеева химические элементы располагаются в определенной последовательности. Эта последовательность тесно связана со строением атомов этих элементов. Каждому химическому элементу в системе присвоен порядковый номер , кроме того, для него можно указать номер периода, номер группы, вид подгруппы.

Спонсор публикации статьи интернет-магазин "Мегамех". В магазине Вы найдёте изделия из меха на любой вкус - куртки, жилетки и шубы из лисы , нутрии, кролика, норки, чернобурки, песца. Компания также предлагает Вам приобрести элитные меховые изделия и воспользоваться услугами индивидуального пошива. Меховые изделия оптом и в розницу - от бюджетной категории до класса люкс, скидки до 50%, гарантия 1 год, доставка по Украине, России, СНГ и странам Евросоюза, самовывоз из шоу-рума в г.Кривой Рог, товары от ведущих производителей Украины, России, Турции и Китая. Посмотреть каталог товаров, цены, контакты и получить консультацию Вы сможете на сайте, который располагается по адресу: "megameh.com".

Зная точный «адрес» химического элемента – группу, подгруппу и номер периода, можно однозначно определить строение его атома.

Период – это горизонтальный ряд химических элементов. В современной периодической системе семь периодов. Первые три периода – малые , т.к. они содержат 2 или 8 элементов:

1-й период – Н, Не – 2 элемента;

2-й период – Li … Nе – 8 элементов;

3-й период – Na ... Аr – 8 элементов.

Остальные периоды – большие . Каждый из них содержит 2–3 ряда элементов:

4-й период (2 ряда) – K ... Kr – 18 элементов;

6-й период (3 ряда) – Сs ... Rn – 32 элемента. В этот период входит ряд лантаноидов.

Группа – вертикальный ряд химических элементов. Всего групп восемь. Каждая группа состоит из двух подгрупп: главной подгруппы и побочной подгруппы . Например:

Главную подгруппу образуют химические элементы малых периодов (например, N, P) и больших периодов (например, As, Sb, Bi).

Побочную подгруппу образуют химические элементы только больших периодов (например, V, Nb,
Ta).

Визуально эти подгруппы различить легко. Главная подгруппа «высокая», она начинается с 1-го или 2-го периода. Побочная подгруппа – «низкая», начинается с 4-го периода.

Итак, каждый химический элемент периодической системы имеет свой адрес: период, группу, подгруппу, порядковый номер.

Например, ванадий V – это химический элемент 4-го периода, V группы, побочной подгруппы, порядковый номер 23.

Задание 3.1. Укажите период, группу и подгруппу для химических элементов с порядковыми номерами 8, 26, 31, 35, 54.

Задание 3.2. Укажите порядковый номер и название химического элемента, если известно, что он находится:

а) в 4-м периоде, VI группе, побочной подгруппе;

б) в 5-м периоде, IV группе, главной подгруппе.

Каким образом можно связать сведения о положении элемента в периодической системе со строением его атома?

Атом состоит из ядра (оно имеет положительный заряд) и электронов (они имеют отрицательный заряд). В целом атом электронейтрален.

Положительный заряд ядра атома равен порядковому номеру химического элемента.

Ядро атома – сложная частица. В ядре сосредоточена почти вся масса атома. Поскольку химический элемент – совокупность атомов с одинаковым зарядом ядра, то около символа элемента указывают следующие его координаты:

По этим данным можно определить состав ядра. Ядро состоит из протонов и нейтронов.

Протон p имеет массу 1 (1,0073 а. е. м.) и заряд +1. Нейтрон n заряда не имеет (нейтрален), а масса его приблизительно равна массе протона (1,0087 а. е. м.).

Заряд ядра определяют протоны. Причем число протонов равно (по величине) заряду ядра атома , т.е. порядковому номеру .

Число нейтронов N определяют по разности между величинами: «масса ядра» А и «порядковый номер» Z . Так, для атома алюминия:

N = А Z = 27 –13 = 14n ,

Задание 3.3. Определите состав ядер атомов, если химический элемент находится в:

а) 3-м периоде, VII группе, главной подгруппе;

б) 4-м периоде, IV группе, побочной подгруппе;

в) 5-м периоде, I группе, главной подгруппе.

Внимание! При определении массового числа ядра атома приходится округлять атомную массу, указанную в периодической системе. Так поступают потому, что массы протона и нейтрона практически целочисленны, а массой электронов можно пренебречь.

Определим, какие из приведенных ниже ядер принадлежат одному и тому же химическому элементу:

А (20р + 20n ),

Б (19р + 20n ),

В (20р + 19n ).

Атомам одного химического элемента принадлежат ядра А и В, поскольку они содержат одинаковое число протонов, т. е. заряды этих ядер одинаковые. Исследования показывают, что масса атома не оказывает существенного влияния на его химические свойства.

Изотопами называют атомы одного и того же химического элемента (одинаковое число протонов), различающиеся массой (разное число нейтронов).

Изотопы и их химические соединения отличаются друг от друга по физическим свойствам, но химические свойства у изотопов одного химического элемента одинаковы. Так, изотопы углерода-14 (14 С) имеют такие же химические свойства, как и углерода-12 (12 С), которые входят в ткани любого живого организма. Отличие проявляется только в радиоактивности (изотоп 14 С). Поэтому изотопы применяют для диагностики и лечения различных заболеваний, для научных исследований.

Вернемся к описанию строения атома. Как известно, ядро атома в химических процессах не изменяется. А что изменяется? Переменным оказывается общее число электронов в атоме и распределение электронов. Общее число электронов в нейтральном атоме определить несложно – оно равно порядковому номеру, т.е. заряду ядра атома:

Электроны имеют отрицательный заряд –1, а масса их ничтожна: 1/1840 от массы протона.

Отрицательно заряженные электроны отталкиваются друг от друга и находятся на разных расстояниях от ядра. При этом электроны, имеющие приблизительно равный запас энергии, находятся на приблизительно равном расстоянии от ядра и образуют энергетический уровень.

Число энергетических уровней в атоме равно номеру периода, в котором находится химический элемент. Энергетические уровни условно обозначают так (например, для Al):

Задание 3.4. Определите число энергетических уровней в атомах кислорода, магния, кальция, свинца.

На каждом энергетическом уровне может находиться ограниченное число электронов:

На первом – не более двух электронов;

На втором – не более восьми электронов;

На третьем – не более восемнадцати электронов.

Эти числа показывают, что, например, на втором энергетическом уровне может находиться 2, 5 или 7 электронов, но не может быть 9 или 12 электронов.

Важно знать, что независимо от номера энергетического уровня на внешнем уровне (последнем) не может быть больше восьми электронов. Внешний восьмиэлектронный энергетический уровень является наиболее устойчивым и называется завершенным. Такие энергетические уровни имеются у самых неактивных элементов – благородных газов.

Как определить число электронов на внешнем уровне остальных атомов? Для этого существует простое правило: число внешних электронов равно:

Для элементов главных подгрупп – номеру группы;

Для элементов побочных подгрупп оно не может быть больше двух.

Например (рис. 5):

Задание 3.5. Укажите число внешних электронов для химических элементов с порядковыми номерами 15, 25, 30, 53.

Задание 3.6. Найдите в периодической системе химические элементы, в атомах которых имеется завершенный внешний уровень.

Очень важно правильно определять число внешних электронов, т.к. именно с ними связаны важнейшие свойства атома. Так, в химических реакциях атомы стремятся приобрести устойчивый, завершенный внешний уровень (8е ). Поэтому атомы, на внешнем уровне которых мало электронов, предпочитают их отдать.

Химические элементы, атомы которых способны только отдавать электроны, называют металлами . Очевидно, что на внешнем уровне атома металла должно быть мало электронов: 1, 2, 3.

Если на внешнем энергетическом уровне атома много электронов, то такие атомы стремятся принять электроны до завершения внешнего энергетического уровня, т. е. до восьми электронов. Такие элементы называют неметаллами .

В о п р о с. К металлам или неметаллам относятся химические элементы побочных подгрупп? Почему?

О т в е т. Металлы и неметаллы главных подгрупп в таблице Менделеева отделяет линия, которую можно провести от бора к астату. Выше этой линии (и на линии) располагаются неметаллы, ниже – металлы. Все элементы побочных подгрупп оказываются ниже этой линии.

Задание 3.7. Определите, к металлам или неметаллам относятся: фосфор, ванадий, кобальт, селен, висмут. Используйте положение элемента в периодической системе химических элементов и число электронов на внешнем уровне.

Для того, чтобы составить распределение электронов по остальным уровням и подуровням, следует воспользоваться следующим а л г о р и т м о м.

1. Определить общее число электронов в атоме (по порядковому номеру).

2. Определить число энергетических уровней (по номеру периода).

3. Определить число внешних электронов (по виду подгруппы и номеру группы).

4. Указать число электронов на всех уровнях, кроме предпоследнего.

Например, согласно пунктам 1–4 для атома марганца определено:

Всего 25е ; распределили (2 + 8 + 2) = 12e ; значит, на третьем уровне находится: 25 – 12 = 13e .

Получили распределение электронов в атоме марганца:

Задание 3.8. Отработайте алгоритм, составив схемы строения атомов для элементов № 16, 26, 33, 37. Укажите, металлы это или неметаллы. Ответ поясните.

Составляя приведенные выше схемы строения атома, мы не учитывали, что электроны в атоме занимают не только уровни, но и определенные подуровни каждого уровня. Виды подуровней обозначаются латинскими буквами: s , p , d .

Число возможных подуровней равно номеру уровня. Первый уровень состоит из одного
s -подуровня. Второй уровень состоит из двух подуровней – s и р . Третий уровень – из трех подуровней – s , p и d .

На каждом подуровне может находиться строго ограниченное число электронов:

на s-подуровне – не больше 2е;

на р-подуровне – не больше 6е;

на d-подуровне – не больше 10е.

Подуровни одного уровня заполняются в строго определенном порядке: s p d .

Таким образом, р -подуровнь не может начать заполняться, если не заполнен s -подуровень данного энергетического уровня, и т.д. Исходя из этого правила, несложно составить электронную конфигурацию атома марганца:

В целом электронная конфигурация атома марганца записывается так:

25 Мn 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 2 .

Задание 3.9. Составьте электронные конфигурации атомов для химических элементов № 16, 26, 33, 37.

Для чего необходимо составлять электронные конфигурации атомов? Для того, чтобы определять свойства этих химических элементов. Следует помнить, что в химических процессах участвуют только валентные электроны .

Валентные электроны находятся на внешнем энергетическом уровне и незавершенном
d-подуровне предвнешнего уровня.

Определим число валентных электронов для марганца:

или сокращенно: Мn … 3d 5 4s 2 .

Что можно определить по формуле электронной конфигурации атома?

1. Какой это элемент – металл или неметалл?

Марганец – металл, т.к. на внешнем (четвертом) уровне находится два электрона.

2. Какой процесс характерен для металла?

Атомы марганца в реакциях всегда только отдают электроны.

3. Какие электроны и сколько будет отдавать атом марганца?

В реакциях атом марганца отдает два внешних электрона (они дальше всех от ядра и слабее притягиваются им), а также пять предвнешних d -электронов. Общее число валентных электронов – семь (2 + 5). В этом случае на третьем уровне атома останется восемь электронов, т.е. образуется завершенный внешний уровень.

Все эти рассуждения и заключения можно отразить при помощи схемы (рис. 6):

Полученные условные заряды атома называют степенями окисления .

Рассматривая строение атома, аналогичным способом можно показать, что типичными степенями окисления для кислорода является –2, а для водорода +1.

В о п р о с. С каким из химических элементов может образовывать соединения марганец, если учесть полученные выше степени его окисления?

О т в е т. Только с кислородом, т.к. его атом имеет противоположную по заряду степень окисления. Формулы соответствующих оксидов марганца (здесь степени окисления соответствуют валентностям этих химических элементов):

Строение атома марганца подсказывает, что большей степени окисления у марганца быть не может, т.к. в этом случае пришлось бы затрагивать устойчивый, теперь уже завершенный предвнешний уровень. Поэтому степень окисления +7 является высшей, а соответствующий оксид Мn 2 О 7 – высшим оксидом марганца.

Для закрепления всех этих понятий рассмотрим строение атома теллура и некоторые его свойства:

Как неметалл, атом Te может принять 2 электрона до завершения внешнего уровня и отдать «лишние» 6 электронов:

Задание 3.10. Изобразите электронные конфигурации атомов Nа, Rb, Cl, I, Si, Sn. Определите свойства этих химических элементов, формулы их простейших соединений (с кислородом и водородом).

Практические выводы

1. В химических реакциях участвуют только валентные электроны, которые могут находиться только на двух последних уровнях.

2. Атомы металлов могут только отдавать валентные электроны (все или несколько), принимая положительные степени окисления.

3. Атомы неметаллов могут принимать электроны (недостающие – до восьми), приобретая при этом отрицательные степени окисления, и отдавать валентные электроны (все или несколько), при этом они приобретают положительные степени окисления.

Сравним теперь свойства химических элементов одной подгруппы, например натрия и рубидия:
Nа...3s 1 и Rb ...5s 1 .

Что общего в строении атомов этих элементов? На внешнем уровне каждого атома по одному электрону – это активные металлы. Металлическая активность связана со способностью отдавать электроны: чем легче атом отдает электроны, тем сильнее выражены его металлические свойства.

Что удерживает электроны в атоме? Притяжение их к ядру. Чем ближе электроны к ядру, тем сильнее они притягиваются ядром атома, тем труднее их «оторвать».

Исходя из этого, ответим на вопрос: какой элемент – Nа или Rb – легче отдает внешний электрон? Какой из элементов является более активным металлом? Очевидно, рубидий, т.к. его валентные электроны находятся дальше от ядра (и слабее удерживаются ядром).

Вывод. В главных подгруппах сверху вниз металлические свойства усиливаются , т.к. возрастает радиус атома, и валентные электроны слабее притягиваются к ядру.

Сравним свойства химических элементов VIIa группы: Cl …3s 2 3p 5 и I …5s 2 5p 5 .

Оба химических элемента – неметаллы, т.к. до завершения внешнего уровня не хватает одного электрона. Эти атомы будут активно притягивать недостающий электрон. При этом чем сильнее притягивает атом неметалла недостающий электрон, тем сильнее проявляются его неметаллические свойства (способность принимать электроны).

За счет чего происходит притяжение электрона? За счет положительного заряда ядра атома. Кроме того, чем ближе электрон к ядру, тем сильнее их взаимное притяжение, тем активнее неметалл.

В о п р о с. У какого элемента сильнее выражены неметаллические свойства: у хлора или йода?

О т в е т. Очевидно, у хлора, т.к. его валентные электроны расположены ближе к ядру.

Вывод. Активность неметаллов в подгруппах сверху вниз убывает , т.к. возрастает радиус атома и ядру все труднее притянуть недостающие электроны.

Сравним свойства кремния и олова: Si …3s 2 3p 2 и Sn …5s 2 5p 2 .

На внешнем уровне обоих атомов по четыре электрона. Тем не менее эти элементы в периодической системе находятся по разные стороны от линии, соединяющей бор и астат. Поэтому у кремния, символ которого находится выше линии В–At, сильнее проявляются неметаллические свойства. Напротив, у олова, символ которого находится ниже линии В–At, сильнее проявляются металлические свойства. Это объясняется тем, что в атоме олова четыре валентных электрона удалены от ядра. Поэтому присоединение недостающих четырех электронов затруднено. В то же время отдача электронов с пятого энергетического уровня происходит достаточно легко. Для кремния возможны оба процесса, причем первый (прием электронов) преобладает.

Выводы по главе 3. Чем меньше внешних электронов в атоме и чем дальше они от ядра, тем сильнее проявляются металлические свойства.

Чем больше внешних электронов в атоме и чем ближе они к ядру, тем сильнее проявляются неметаллические свойства.

Основываясь на выводах, сформулированных в этой главе, для любого химического элемента периодической системы можно составить «характеристику».

Алгоритм описания свойств
химического элемента по его положению
в периодической системе

1. Составить схему строения атома, т.е. определить состав ядра и распределение электронов по энергетическим уровням и подуровням:

Определить общее число протонов, электронов и нейтронов в атоме (по порядковому номеру и относительной атомной массе);

Определить число энергетических уровней (по номеру периода);

Определить число внешних электронов (по виду подгруппы и номеру группы);

Указать число электронов на всех энергетических уровнях, кроме предпоследнего;

2. Определить число валентных электронов.

3. Определить, какие свойства – металла или неметалла – сильнее проявляются у данного химического элемента.

4. Определить число отдаваемых (принимаемых) электронов.

5. Определить высшую и низшую степени окисления химического элемента.

6. Составить для этих степеней окисления химические формулы простейших соединений с кислородом и водородом.

7. Определить характер оксида и составить уравнение его реакции с водой.

8. Для указанных в пункте 6 веществ составить уравнения характерных реакций (см. главу 2).

Задание 3.11. По приведенной выше схеме составить описания атомов серы, селена, кальция и стронция и свойства этих химических элементов. Какие общие свойства проявляют их оксиды и гидроксиды?

Если вы выполнили упражнения 3.10 и 3.11, то легко заметить, что не только атомы элементов одной подгруппы, но и их соединения имеют общие свойства и похожий состав.

Периодический закон Д.И.Менделеева: свойства химических элементов, а также свойства простых и сложных веществ, образованных ими, находятся в периодической зависимости от заряда ядер их атомов.

Физический смысл периодического закона: свойства химических элементов периодически повторяются потому, что периодически повторяются конфигурации валентных электронов (распределение электронов внешнего и предпоследнего уровней).

Так, у химических элементов одной и той же подгруппы одинаковое распределение валентных электронов и, значит, похожие свойства.

Например, у химических элементов пятой группы пять валентных электронов. При этом в атомах химических элементов главных подгрупп – все валентные электроны находятся на внешнем уровне: … ns 2 np 3 , где n – номер периода.

У атомов элементов побочных подгрупп на внешнем уровне находятся только 1 или 2 электрона, остальные – на d -подуровне предвнешнего уровня: … (n – 1)d 3 ns 2 , где n – номер периода.

Задание 3.12. Составьте краткие электронные формулы для атомов химических элементов № 35 и 42, а затем составьте распределение электронов в этих атомах по алгоритму. Убедитесь, что ваше предсказание сбылось.

Упражнения к главе 3

1. Сформулируйте определения понятий «период», «группа», «подгруппа». Что общего у химических элементов, которые составляют: а) период; б) группу; в) подгруппу?

2. Что такое изотопы? Какие свойства – физические или химические – совпадают у изотопов? Почему?

3. Сформулируйте периодический закон Д.И.Менделеева. Поясните его физический смысл и проиллюстрируйте примерами.

4. В чем проявляются металлические свойства химических элементов? Как они изменяются в группе и в периоде? Почему?

5. В чем проявляются неметаллические свойства химических элементов? Как они изменяются в группе и в периоде? Почему?

6. Составьте краткие электронные формулы химических элементов № 43, 51, 38. Подтвердите свои предположения описанием строения атомов этих элементов по приведенному выше алгоритму. Укажите свойства этих элементов.

7. По кратким электронным формулам

а) …4s 2 4p 1 ;

б) …4d 1 5s 2 ;

в) …3d 5 4s 1

определите положение соответствующих химических элементов в периодической системе Д.И.Менделеева. Назовите эти химические элементы. Свои предположения подтвердите описанием строения атомов этих химических элементов по алгоритму. Укажите свойства этих химических элементов.

Продолжение следует

Сегодня поведаем о том, что такое энергетический уровень атома, когда человек сталкивается с этим понятием, и где оно применяется.

Школьная физика

Люди впервые встречаются с естественными науками в школе. И если на седьмом году обучения дети еще находят новые знания по биологии и химии интересными, то в старших классах их начинают бояться. Когда приходит черед атомной физики, уроки по этой дисциплине уже внушают только отвращение к непонятным задачам. Однако стоит помнить, что у всех открытий, которые сейчас превратились в скучные школьные предметы, нетривиальная история и целый арсенал полезных применений. Узнавать, как устроен мир - это как открывать шкатулку с чем-то интересным внутри: всегда хочется найти потайное отделение и обнаружить там еще одно сокровище. Сегодня мы расскажем об одном из базовых физики, строении вещества.

Неделимый, составной, квантовый

С древнегреческого языка слово «атом» переводится как «неделимый, наименьший». Такое представление - следствие истории науки. Некоторые древние греки и индийцы верили, что все на свете состоит из мельчайших частиц.

В современной истории были произведены намного раньше физических исследований. Ученые семнадцатого и восемнадцатого веков работали в первую очередь для увеличения военной мощи страны, короля или герцога. А чтобы создать взрывчатку и порох, надо было понять, из чего они состоят. В итоге исследователи выяснили: некоторые элементы нельзя разделить дальше определенного уровня. Значит, существуют наименьшие носители химических свойств.

Но они ошибались. Атом оказался составной частицей, а его способность изменяться носит квантовый характер. Об этом говорят и переходы энергетических уровней атома.

Положительное и отрицательное

В конце девятнадцатого века ученые вплотную подошли к изучению мельчайших частиц вещества. Например, было понятно: атом содержит как положительно, так и отрицательно заряженные составляющие. Но была неизвестна: расположение, взаимодействие, соотношение веса его элементов оставались загадкой.

Резерфорд поставил опыт по рассеянию альфа-частиц тонкой Он выяснил, что в центре атомов находятся тяжелые положительные элементы, а по краям расположены очень легкие отрицательные. Значит, носителями разных зарядов являются не похожие друг на друга частицы. Это объясняло заряд атомов: к ним можно было добавить элемент или удалить его. Равновесие, которое поддерживало нейтральность всей системы, нарушалось, и атом приобретал заряд.

Электроны, протоны, нейтроны

Позже выяснилось: легкие отрицательные частицы - это электроны, а тяжелое положительное ядро состоит из двух видов нуклонов (протонов и нейтронов). Протоны отличались от нейтронов только тем, что первые были положительно заряженными и тяжелыми, а вторые имели только массу. Изменить состав и заряд ядра сложно: для этого требуются неимоверные энергии. А вот электроном атом делится гораздо легче. Есть более электроотрицательные атомы, которые охотнее «отбирают» электрон, и менее электроотрицательные, которые скорее «отдадут» его. Так формируется заряд атома: если электронов избыток, то он отрицательный, а если недостаток - то положительный.

Длинная жизнь вселенной

Но такое строение атома озадачивало ученых. Согласно господствовавшей в те времена классической физике, электрон, который все время двигался вокруг ядра, должен был непрерывно излучать электромагнитные волны. Так как этот процесс означает потерю энергии, то все отрицательные частицы вскоре потеряли бы свою скорость и упали на ядро. Однако вселенная существует уже очень долго, а всемирной катастрофы еще не произошло. Назревал парадокс слишком старой материи.

Постулаты Бора

Объяснить несоответствие смогли постулаты Бора. Тогда это были просто утверждения, скачки в неизвестное, которые не подтверждались расчетами или теорией. Согласно постулатам, существовали в атоме энергетические уровни электронов. Каждая отрицательно заряженная частица могла находиться только на этих уровнях. Переход между орбиталями (так назвали уровни) осуществляется прыжком, при этом выделяется или поглощается квант электромагнитной энергии.

Позже открытие Планком кванта объяснило такое поведение электронов.

Свет и атом

Количество энергии, необходимой для перехода, зависит от расстояния между энергетическими уровнями атома. Чем они дальше друг от друга, тем больше выделяемый или поглощаемый квант.

Как известно, свет - это и есть квант электромагнитного поля. Таким образом, когда электрон в атоме переходит с более высокого на более низкий уровень, он творит свет. При этом действует и обратный закон: когда электромагнитная волна падает на предмет, она возбуждает его электроны, и они переходят на более высокую орбиталь.

Кроме того, энергетические уровни атома индивидуальны для каждого вида химического элемента. Узор расстояний между орбиталями различается для водорода и золота, вольфрама и меди, брома и серы. Поэтому анализ спектров испускания любого объекта (в том числе и звезды) однозначно определяет, какие вещества и в каком количестве в нем присутствуют.

Применяется этот метод невероятно широко. Спектральный анализ используется:

  • в криминалистике;
  • в контроле качества еды и воды;
  • в производстве товаров;
  • в создании новых материалов;
  • в усовершенствовании технологий;
  • в научных экспериментах;
  • в исследовании звезд.

Этот перечень лишь примерно показывает, насколько полезным оказалось открытие электронных уровней в атоме. Электронные уровни - самые грубые, самые большие. Существуют более мелкие колебательные, и еще более тонкие вращательные уровни. Но они актуальны только для сложных соединений - молекул и твердых тел.

Надо сказать, что структура ядра до сих пор не исследована до конца. Например, нет ответа на вопрос о том, почему определенному количеству протонов соответствует именно такое число нейтронов. Ученые предполагают, что атомное ядро тоже содержит некий аналог электронных уровней. Однако до сих пор это не доказано.

2. Строение ядер и электронных оболочек атомов

2.6. Энергетические уровни и подуровни

Наиболее важной характеристикой состояния электрона в атоме является энергия электрона, которая согласно законам квантовой механики изменяется не непрерывно, а скачкообразно, т.е. может принимать только вполне определенные значения. Таким образом, можно говорить о наличии в атоме набора энергетических уровней.

Энергетический уровень - совокупность АО с близкими значениями энергии.

Энергетические уровни нумеруют с помощью главного квантового числа n , которое может принимать только целочисленные положительные значения (n = 1, 2, 3, ...). Чем больше значение n , тем выше энергия электрона и данного энергетического уровня. Каждый атом содержит бесконечное число энергетических уровней, часть из которых в основном состоянии атома заселена электронами, а часть - нет (эти энергетические уровни заселяются в возбужденном состоянии атома).

Электронный слой - совокупность электронов, находящихся на данном энергетическом уровне.

Иными словами, электронный слой - это энергетический уровень, содержащий электроны.

Совокупность электронных слоев образует электронную оболочку атома.

В пределах одного и того же электронного слоя электроны могут несколько различаться по энергии, в связи с чем говорят, что энергетические уровни расщепляются на энергетические подуровни (подслои ). Число подуровней, на которые расщепляется данный энергетический уровень, равно номеру главного квантового числа энергетического уровня:

N (подур) = n (уровн) . (2.4)

Подуровни изображаются с помощью цифр и букв: цифра отвечает номеру энергетического уровня (электронного слоя), буква - природе АО, формирующей подуровни (s -, p -, d -, f -), например: 2p -подуровень (2p -АО, 2p -электрон).

Таким образом, первый энергетический уровень (рис. 2.5) состоит из одного подуровня (1s ), второй - из двух (2s и 2p ), третий - из трех (3s , 3p и 3d ), четвертый из четырех (4s , 4p , 4d и 4f ) и т.д. Каждый подуровень содержит определенное число АО:

N (AO) = n 2 . (2.5)

Рис. 2.5. Схема энергетических уровней и подуровней для первых трех электронных слоев

1. АО s -типа имеются на всех энергетических уровнях, p -типа появляются начиная со второго энергетического уровня, d -типа - с третьего, f -типа - с четвертого и т.д.

2. На данном энергетическом уровне может быть одна s -, три p -, пять d -, семь f -орбиталей.

3. Чем больше главное квантовое число, тем больше размеры АО.

Поскольку на одной АО не может находиться более двух электронов, общее (максимальное) число электронов на данном энергетическом уровне в 2 раза больше числа АО и равно:

N (e) = 2n 2 . (2.6)

Таким образом, на данном энергетическом уровне максимально может быть 2 электрона s -типа, 6 электронов р -типа и 10 электронов d -типа. Всего же на первом энергетическом уровне максимальное число электронов равно 2, на втором - 8 (2 s -типа и 6 р -типа), на третьем - 18 (2 s -типа, 6 р -типа и 10 d -типа). Эти выводы удобно обобщить в табл. 2.2.

Таблица 2.2

Связь между главным квантовым числом, числом э

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ

Наименование параметра Значение
Тема статьи: ЭНЕРГЕТИЧЕСКИЕ УРОВНИ
Рубрика (тематическая категория) Образование

СТРОЕНИЕ АТОМА

1. Развитие теории строения атома. С

2. Ядро и электронная оболочка атома. С

3. Строение ядра атома. С

4. Нуклиды, изотопы, массовое число. С

5. Энергетические уровни.

6. Квантово-механическое объяснение строения.

6.1. Орбитальная модель атома.

6.2. Правила заполнения орбиталей.

6.3. Орбитали с s-электронами (атомные s-орбитали).

6.4. Орбитали с p-электронами (атомные p-орбитали).

6.5. Орбитали с d- f-электронами

7. Энергетические подуровни многоэлектронного атома. Квантовые числа.

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ

Строение электронной оболочки атома определяется различным запасом энергииотдельных электронов в атоме. В соответствии с моделью атома Бора электроны могут занимать в атоме положения, которым отвечают точно определœенные (квантованные) энергетические состояния. Эти состояния называются энергетическими уровнями.

Число электронов, которые могут находиться на отдельном энергетическом уровне, определяется формулой 2n 2 , где n –номер уровня, который обозначается арабскими цифрами 1 – 7. Максимальное заполнение первых четырех энергетических уровней в. соответствии с формулой 2n 2 составляет: для первого уровня – 2 электрона, для второго – 8, для третьего –18 и для четвертого уровня – 32 электрона. Максимальное заполнение электронами более высоких энергетических уровней в атомах известных элементов не достигнуто.

Рис. 1показывает заполнение электронами энергетических уровней первых двадцати элементов (от водорода Н до кальция Са, черные кружки). Заполняя в указанном порядке энергетические уровни, получают простейшие модели атомов элементов, при этом соблюдают порядок заполнения (снизу вверх и слева направо по рисунку) таким образом, пока последний электрон не укажет на символ соответствующего элементаНа третьем энергетическом уровне М (максимальная емкость равна 18 е - )для элементов Nа – Аr содержится только 8 электронов, затем начинает застраиваться четвертый энергетический уровень N –на нем появляются два электрона для элементов К и Са. Следующие 10 электронов снова занимают уровень М (элементы Sc – Zn (не показаны), а потом продолжается заполнение уровня N еще шестью электронами (элементы Cа-Кr, белые кружки).

Рис. 1 Рис. 2

В случае если атом находится в основном состоянии, то его электроны занимают уровни с минимальной энергией, т. е. каждый последующий электрон занимает энергетически самое выгодное положение, такое, как на рис. 1. При внешнем воздействии на атом, связанном с передачей ему энергии, к примеру путем нагревания, электроны переводятся на более высокие энергетические уровни (рис. 2). Такое состояние атома принято называть возбужденным. Освободившееся на нижнем энергетическом уровне место заполняется (как выгодное положение) электроном с более высокого энергетического уровня. При переходе электрон отдает неĸᴏᴛᴏᴩᴏᴇ количество энергии, ĸᴏᴛᴏᴩᴏᴇ соответствует энергетической разности между уровнями. В результате электронных переходов возникает характерное излучение. по спектральным линиям поглощаемого (излучаемого) света можно сделать количественное заключение об энергетических уровнях атома.

В соответствии с квантовой моделью атома Бора электрон, имеющий определœенное энергетическое состояние, движется в атоме по круговой орбите. Электроны с одинаковым запасом энергии находятся на равных расстояниях от ядра, каждому энергетическому уровню отвечает свой набор электронов, названный Бором электронным слоем. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, по Бору электроны одного слоя двигаются по шаровой поверхности, электроны следующего слоя по другой шаровой поверхности. всœе сферы вписаны одна в другую с центром, отвечающим атомному ядру.

ЭНЕРГЕТИЧЕСКИЕ УРОВНИ - понятие и виды. Классификация и особенности категории "ЭНЕРГЕТИЧЕСКИЕ УРОВНИ" 2017, 2018.

Малюгина 14. Внешний и внутренний энергетический уровни. Завершенность энергетического уровня.

Вспомним вкратце, что мы уже знаем о строении электронной оболочки атомов:

ü число энергетических уровней атома = номеру периода, в котором находится элемент;

ü максимальная емкость каждого энергетического уровня вычисляется по формуле 2n2

ü внешняя энергетическая оболочка не может содержать для элементов 1 периода более 2-х электронов, для элементов других периодов более 8 электронов

Еще раз вернемся к анализу схемы заполнения энергетических уровней у элементов малых периодов:

Таблица1.Заполнение энергетических уровней

у элементов малых периодов

Номер периода

Количество энергетических уровней = номеру периода

Символ элемента, его порядковый номер

Общее количество

электронов

Распределение электронов по энергетическим уровням

Номер группы

Н +1 )1

+1 Н, 1е-

Н e + 2 ) 2

+2 Не, 2е-

Li + 3 ) 2 ) 1

+ 3 Li , 2е-, 1е-

Ве +4 ) 2 )2

+ 4 Be , 2е-, 2 е-

В +5 ) 2 )3

+5 В, 2е-, 3е-

С +6 ) 2 )4

+6 С, 2е-, 4е-

N + 7 ) 2 ) 5

+ 7 N , 2е-, 5 е-

O + 8 ) 2 ) 6

+ 8 O , 2е-, 6 е-

F + 9 ) 2 ) 7

+ 9 F , 2е-, 7 е-

Ne + 10 ) 2 ) 8

+ 10 Ne , 2е-, 8 е -

Na + 11 ) 2 ) 8 )1

+1 1 Na , 2е-, 8е-, 1e-

Mg + 12 ) 2 ) 8 )2

+1 2 Mg , 2е-, 8е-, 2 e-

Al + 13 ) 2 ) 8 )3

+1 3 Al , 2е-, 8е-, 3 e-

Si + 14 ) 2 ) 8 )4

+1 4 Si , 2е-, 8е-, 4 e-

P + 15 ) 2 ) 8 )5

+1 5 P , 2е-, 8е-, 5 e-

S + 16 ) 2 ) 8 )6

+1 5 P , 2е-, 8е-, 6 e-

Cl + 17 ) 2 ) 8 )7

+1 7 Cl , 2е-, 8е-, 7 e-

18 Ar

Ar + 18 ) 2 ) 8 )8

+1 8 Ar , 2е-, 8е-, 8 e-

Проанализируйте таблицу 1. Сравните число электронов на последнем энергетическом уровне и номер группы, в которой находится химический элемент.

Заметили ли Вы, что число электронов на внешнем энергетическом уровне атомов совпадает с номером группы , в которой находится элемент (исключение составляет гелий)?

!!! Это правило справедливо только для элементов главных подгрупп.

Каждый период системы заканчивается инертным элементом (гелий He, неон Ne, аргон Ar). Внешний энергетический уровень этих элементов содержит максимально возможное число электронов: гелий -2, остальные элементы – 8. Это элементы VIII группы главной подгруппы. Энергетический уровень, схожий со строением энергетического уровня инертного газа, называют завершенным . Это своеобразный предел прочности энергетического уровня для каждого элемента Периодической системы. Молекулы простых веществ – инертных газов состоят из одного атома и отличаются химической инертностью, т. е. практически не вступают в химические реакции.

У остальных элементов ПСХЭ энергетический уровень отличается от энергетического уровня инертного элемента, такие уровни называют незавершенными . Атомы этих элементов стремятся к завершению внешнего энергетического уровня, отдавая или принимая электроны.

Вопросы для самоконтроля

1. Какой энергетический уровень называется внешним?

2. Какой энергетический уровень называется внутренним?

3. Какой энергетический уровень называется завершенным?

4. Элементы какой группы и подгруппы имеют завершенный энергетический уровень?

5. Чему равно число электронов на внешнем энергетическом уровне элементов главных подгрупп?

6. Чем схожи по строению электронного уровня элементы одной главной подгруппы

7. Сколько электронов на внешнем уровне содержат элементы а) IIA группы;

б) IVA группы; в) VII A группы

Посмотреть ответ

1. Последний

2. Любой, кроме последнего

3. Тот, который содержит максимальное число электронов. А также внешний уровень, если он содержит 8 электронов для I периода - 2 электрона.

4. Элементы VIIIA группы (инертные элементы)

5. Номеру группы, в которой находится элемент

6. У всех элементов главных подгрупп на внешнем энергетическом уровне содержится столько электронов, каков номер группы

7. а) у элементов IIA группы на внешнем уровне 2 электрона; б) у элементов IVA группы – 4 электрона; в) у элементов VII A группы – 7 электронов.

Задания для самостоятельного решения

1. Определите элемент по следующим признакам: а) имеет 2 электронных уровня, на внешнем – 3 электрона; б) имеет 3 электронных уровня, на внешнем – 5 электронов. Запишите распределение электронов по энергетическим уровням этих атомов.

2. Какие два атома имеют одинаковое число заполненных энергетических уровней?

Посмотреть ответ :

1. а) Установим «координаты» химического элемента: 2 электронных уровня – II период; 3 электрона на внешнем уровне – III А группа. Это бор 5B. Схема распределения электронов по энергетическим уровням: 2е-, 3е-

б) III период, VА группа, элемент фосфор 15Р. Схема распределения электронов по энергетическим уровням: 2е-, 8е-, 5е-

2. г) натрий и хлор.

Пояснение : а) натрий: +11 )2)8 )1 (заполненных 2) ←→ водород: +1)1

б) гелий: +2 )2 (заполненых 1) ←→ водород: водород: +1)1

в) гелий: +2 )2 (заполненных 1) ←→ неон: +10 )2)8 (заполненных 2)

*г) натрий: +11 )2)8 )1 (заполненных 2) ←→ хлор: +17 )2)8 )7 (заполненных 2)

4. Десять. Число электронов = порядковому номеру

5 в) мышьяк и фосфор. Одинаковое число электронов имеют атомы, расположенные в одной подгруппе.

Пояснения:

а) натрий и магний (в разных группах); б) кальций и цинк (в одной группе, но разных подгруппах) ; * в) мышьяк и фосфор (в одной, главной, подгруппе) г) кислород и фтор (в разных группах).

7. г) число электронов на внешнем уровне

8. б) число энергетических уровней

9. а) литий (находится в IA группе II периода)

10. в) кремний (IVA группа, III период)

11. б) бор (2 уровня - II период , 3 электрона на внешнем уровне – IIIA группа )