Эфиры серной кислоты. Тиосульфат натрия

Преподаватель: Кораблёва А.А.

ОТЧЕТ

О ЛАБОРАТОРНОЙ РАБОТЕ

ПО КУРСУ: ОБЩАЯ ХИМИЯ

" СКОРОСТЬ РЕАКЦИИ В РАСТВОРАХ "

ОФ 62 5528 1.04 ЛР

Работу выполнил

студент группы

Санкт – Петербург

Цель работы:

Определить константу скорости, температурный коэффициент, энергию активации реакции взаимодействия тиосульфата натрия с серной кислотой.

В данной лабораторной работе изучается реакция между тиосульфатом натрия (гипосульфитом) Na2S2O3 и серной кислотой H2SO4.

Эта реакция протекает в две стадии:

1) (быстро)

Первая стадия ионного обмена протекает практически мгновенно. Тиосерная кислота неустойчивое соединение, распадающееся с выделением белого осадка серы.

2) (медленно)

О скорости реакции можно судить по появлению опалесценции и дальнейшему помутнению раствора от выпавшей серы.

Суммарная реакция определяется второй стадией процесса и зависит от концентрации H2SO4 , а значит и Na2S2O3 (реакция псевдомолекулярна).

Кинетическое уравнение имеет вид:

Приборы и реактивы:

Термостаты, термометры, мерные цилиндры, пробирки, пробиркодержатели, секундомер, растворы Na2S2O3 и H2SO4 .

Опыт №1:

Влияние тиосульфата на скорость химической реакции.

Зависимость скорости реакции от концентрации тиосульфата натрия.

Обработка результатов опыта:

    Рассчитываем относительную скорость реакции по формуле:

2. Исходя из кинетического уравнения, определяем значение константы скорости реакции:

Р

3. Определяем среднее значение константы для данной комнатной температуры, в данном случае Т = 14 град цельс.

4
. Выразить зависимость скорости реакции от концентрации тиосульфата – графически. (см. рис.№1).

5. Графически определяем константу скорости реакции как тангенс угла наклона прямой ОА к оси абсцисс. Сравниваем графически определенную константу с ее аналитическим значением.

КГР = tg = 0.162 КСР = 0.17 КГР  КСР

Опыт №2:

Влияние температуры на скорость химической реакции.

Температура опыта,

Т, град цельс.

реакции t, с

Относит. скорость

реак. V, 1/с

Конст. скор. реак. К, л/моль*с

Обработка результатов опыта:

1.Рассчитываем относительную скорость реакции при каждой температуре:

Результаты смотреть в вышеприведенной таблице.

2.Исходя из кинетического уравнения определяем значение константы для каждой температуры:

Р
езультаты смотреть в вышеприведенной таблице.

3.Выражаем графически влияние температуры на скорость химической реакции. (см. рис.№2).

4.Исходя из уравнения Ван-Гоффа определяем для каждого температурного интервала значение температурного коэффициента и вычисляем его среднее значение:

К2/К1 = 1 = 2.42

К3/К2 = 2 = 1.97 сред = 2.3

К4/К3 = 3 = 2.49

5
. Исходя из уравнения Аррениуса вычисляем аналитическое значение энергии активации для каждого температурного интервала:

Е
а1 = 61785 Дж/моль Еа2 = 50729 Дж/моль Еа3 =72882 Дж/моль

И вычисляем его среднее значение:

ЕаСРЕД = 61798 Дж/моль

6. Выстраиваем графическую зависимость lgK от 1/Т по вычисленным константам скоростей при разных температурах и определяем энергию активации графическим способом (см. рис. №3).

tg = - Еа / 2.3 R , следовательно

ЕаГР = -2.3 R tg = -2.3 * 8.3 * tg = 19.09* 3230 = 61660 Дж/моль

7. Сравниваем значения энергии активации полученные графическим и аналитическим путем:

ЕаГР = 61660 Дж/моль ЕаСРЕД = 61798 Дж/моль ЕаГР  ЕаГР

Вывод:

При температуре равной const, скорость химической реакции пропорциональна концентрации веществ, участвующих в этой реакции. (см. рис.№1)

С увеличением температуры скорость химической реакции увеличивается

При условии, что концентрация остается неизменной. Это можно объяснить тем, что с ростом температуры атомы веществ переходят в более возбужденное состояние, т. е. они получают дополнительную энергию – энергию активации, необходимую для разрыва химической связи и образования нового вещества.

Описание продукта

Гипосульфит натрия внешне выгледит в виде бесцветных кристаллов, которые хорошо растворяются в воде. Он широко применяется в промышленности и медицине. Считается сильным восстановителем.
Гипосульфиты (тиосульфаты) неустойчивы, поэтому в природе не встречаются.

Химическая формула : Na2S2O3 или Na2SO3S
Синонимы : тиосульфа́т на́трия, антихлор, сульфидотриоксосульфат натрия, натрий серноватистокислый.

Применение гипосульфата (тиосульфата) натрия.

Его применяют, чтобы удалить следы хлора после отбеливания тканей, для быстрого извлечения серебра из руд, фиксажа в фотографии, в качестве реактива в иодометрии, противоядия при отравлениях токсичной ртутью, а также другими тяжёлыми металлами, цианидами.

В годы первой мировой войны гипосульфитом пропитывали марлевые повязки и фильтры противогазов для защиты органов дыхания от ядовитого хлора. Его же используют в качестве реактива в аналитической и органической химии, им нейтрализуют сильные кислоты, обезвреживают тяжелые металлы и их токсические соединения. Реакции взаимодействия тиосульфата с различными веществами являются основой йодометрии и бромометрии.

В медицине гипосульфит натрия используется для дезинфекции кишечника, лечения чесотки, в качестве противовоспалительного и противоожогового средства. Также используется как оптимальная среда для определения молекулярных весов по понижению точки замерзания.

В пищевой промышленности гипосульфит натрия зарегистрирован в качестве пищевой добавки E539. Особенно часто его применяют в пекарском производстве. Гипосульфит натрия делает тесто более пластичным, а хлеб становится более рыхлым и объемным. На поверхности изделия не формируются трещины, а выпечка приобретает более привлекательный внешний вид. Количество ввода в состав зависит от вида хлеба и составляет от 0,001 до 0,002 процента от общего веса муки.

В фотографии использование гипосульфита (тиосульфата) натрия в качестве фиксажа основана на способности тиосульфат-иона переводить нерастворимые в воде светочувствительные ионы серебра в растворимые несветочувствительные комплексы.
Фиксажи условно делятся на нейтральные, кислые, дубящие и быстрые.
Нейтральный фиксаж представляет собой раствор тиосульфата натрия в воде. Для упрочнения эмульсионного слоя фотографии используют дубящие фиксажи. В качестве дубящих
веществ в разных рецептурах могут использоваться тетраборат натрия, борная кислота, хромокалиевые или алюмокалиевые квасцы и формалин.

В кожевенном производстве свойство дубящих фиксажей с успехом применяют при выделке кожевенно-мехового полуфабриката на этапе дубления. Такое дубление называют серным. Гипосульфит под воздействием добавляемой в состав раствора кислоты выделяет серу, которая обволакивает коллагеновую структуру волокон в толще шкуры. В результате мездра получается мягкой и пластичной. Шкуры выдубленные с помощью гиросульфта (тиосульфата) натрия, не уступают по качеству изделиям, выделанным алюминием или хромом.

В текстильной промышленности гипосульфит применяют для удаления следов хлора после отбеливания тканей.

Технические характеристики

Массовая доля, %

Гипосульфит натрия (фото)

Гипосульфит натрия (технический)

Тиосульфата натрия (Na 2 S 2 O 3 · 5H 2 O), мин. 99,0 98,5
нерастворимых в воде веществ, макс. 0,01 0,03
железа (Fe), макс. 0,001 0,002
сернистого натрия (Na 2 S), макс. 0,001 0,001
кальция, магния и веществ, нерастворимых в аммониевых растворах, макс. 0,02 не норм.
тяжелых металлов (Pb), макс. 0,001 не норм.
pH водного раствора при 20 о С, макс. 6,5-9,5 не норм.
внешний вид водного раствора бесцветный, прозрачный. не норм.

Где купить гипосульфит (тиосульфат) натрия?

Гипосульфит натрия (тиосульфат натрия) в фасовках 100г., 250г., 500г., 1кг. продается в Новосибирске в интернет магазине "Для дела". В рабочие часы забрать его можно самовывозом или воспользоваться услугами курьера. Для покупателей из других регионов эта продукция отправляется Почтой РФ или транспортными компаниями.

Девиз урока:

“Просто знать – еще не все, знания нужно использовать”.

Цели урока:

Образовательные:

  • расширить представления учащихся о скорости химических реакций;
  • уяснить сущность закона действующих масс (ЗДМ);
  • познакомить учащихся с новыми понятиями (гомогенные и гетерогенные реакции);
  • экспериментально исследовать зависимость скорости химической реакции от концентрации реагирующих веществ.

Развивающие:

  • продолжить формирование экспериментальных навыков учащихся;
  • развивать умение работать в группах и индивидуально;
  • продолжить формирование химического мышления, развития речи, памяти, познавательного интереса к предмету, самостоятельности, умения делать выводы.

Воспитательные:

  • воспитывать умение работать в паре, коммуникативные умения.

Оборудование:

  • Для учителя
  • : фарфоровая чаша, фарфоровый пестик, компьютер, видеопроектор.
  • На рабочем столе ученика
  • : четыре пробирки, подставка для пробирок, часы с секундной стрелкой, черная бумага.

Реактивы: Тиосульфат натрия, серная кислота, вода, алюминий, йод.

Ход урока

1. Вводная часть: сообщение темы урока, настрой учащихся на урок.

Учитель. Кинетика – раздел химии, включающий изучение таких тем, как обратимость химических реакций, тепловой эффект реакций, скорость химических реакций, химическое равновесие. Мы начинаем с темы, название которой вам нужно угадать (тема на доске закрыта; показываю опыт, демонстрирующий зависимость скорости реакции взаимодействия алюминия и кристаллического йода от катализатора).

Вопрос классу. Почему мы начинаем изучение химической кинетики с этой темы?

Тема скорости химических реакций актуальна, так как вокруг нас постоянно происходят разные процессы и скорость их различна. Эти процессы важны и происходят во всех уголках природы, жизнедеятельности людей. (Рисунок 1). Обсуждение среди ребят - сравнение скоростей предложенных реакций. Класс приходит к выводу : все процессы идут с различной скоростью.

Вопросы классу:

1. Что такое скорость реакции? Какая из приведенных формул соответствует скорости химической реакции?

2. В каких единицах измеряют скорость химических реакций?

Важно не только знать скорость химической реакции, но и научиться ею управлять. Зачем? Чтобы ускорить нужную реакцию и замедлить нежелательную. Как сказал Гете: “Просто знать – еще не все, знания нужно использовать”. Посмотрим на экран: на рисунке показана зависимость скорости реакций от определенных внешних факторов (Рисунок 2).

3. Какие факторы влияют на скорость химических реакций?

Ребята называют температуру, катализатор, природу веществ, площадь соприкосновения реагирующих веществ, приводят примеры, в которых наблюдается влияние перечисленных факторов.

2. Основная часть.

Учитель . А какого фактора здесь нет, но влияющего на скорость химических реакций?

Это концентрация реагирующих веществ, она увеличивает скорость реакций в жидкой и газообразной среде. Поэтому на этом уроке экспериментально исследуем влияние концентрации веществ на скорость химических процессов. В 9 классе это был опыт взаимодействия цинка с разбавленной и концентрированной соляной кислотой, а в 10-м классе мы используем реакцию взаимодействия тиосульфата натрия с серной кислотой.

Немного о тиосульфате натрия: химическая формула – Na 2 S 2 O 3 , широко используется в медицине. В фотоделе он известен под названием фиксажной соли. С его помощью с пластинок, бумаги или пленки удаляют неразложившийся бромид серебра. Этот процесс основан на способности тиосульфата натрия образовывать с бромидом серебра соединение, растворимое в воде. Обработанные им пленки и тщательно промытые водой, становятся нечувствительными к дальнейшему действию света.

Смысл химической реакции, лежащей в основе эксперимента: при взаимодействии тиосульфата натрия с серной кислотой наблюдается помутнение - появление чистой серы (признак химической реакции). Эта реакция идет в две стадии.

I стадия: Na 2 S 2 O 3 + Н 2 SO 4 = Na 2 SO 4 + H 2 S 2 O 3 (тиосерная кислота)

II стадия: H 2 S 2 O 3 = H 2 SO 3 + S v

Сера – нерастворимое в воде вещество, вот почему выпадает осадок. Прежде, чем приступить к эксперименту, посмотрим на таблицу, которая лежит у вас на столах – инструкция проведения эксперимента (Рисунок 3). В ней указана концентрация тиосульфата натрия в каплях (условная концентрация). Изменять ее будем при помощи воды. Концентрация серной кислоты остается без изменений – 1 капля. В соседней графе карандашом запишите время проведения реакции. Что считать временем начала реакции? Момент сливания растворов тиосульфата натрия, воды и серной кислоты считаем нулевым, далее вы отсчитываете время до появления помутнения. Чтобы лучше увидеть образование серы в реакции, используйте черную бумагу.

Проделаем предварительный опыт взаимодействия тиосульфата натрия с серной кислотой и отметим время прохождения реакции (секундная стрелка).

После эксперимента строим график зависимости времени прохождения реакции от концентрации тиосульфата натрия (Рисунок 4) . График строим на полстраницы. Концентрацию откладываем в каплях, время – в секундах. На работу отводится 10 минут. Приступайте.

Посмотрим на результаты эксперимента. На доске ученик заносит свои данные в заранее подготовленную таблицу. Сравниваю с моими данными (опыт провожу накануне). Отмечаю, кто более точно из пар провел эксперимент. Затем ученик рисует график зависимости времени прохождения реакции от концентрации тиосульфата натрия. Класс делает вывод :

скорость химической реакции зависит от концентрации. Чем она больше, тем выше скорость реакции.

Вопросы классу:

1.Почему скорость химической реакции увеличивается, ведь с увеличением концентрации время прохождения реакции уменьшается? (ответ – обратнопропорциональная зависимость скорости и времени - смотри формулу).

2. Как выглядит график зависимости скорости реакции от времени? Ребята строят график (Рисунок 5). Почему?

Зависимость скорости химической реакции от концентрации веществ выражается законом действующих масс (ЗДМ), открытом в XIX веке. Например, для условной реакции

скорость химической реакции равна произведению константы скорости химической реакции k на молярные концентрации реагирующих веществ, возведенных в степень их стехиометрических коэффициентов, если необходимо: ? = k С А С В 2

где С А и С В – молярная концентрация веществ А и В, моль/л.

Физический смыл k : при С А = С В = 1моль/л, то k = v .

Но здесь важно учитывать, в какой среде протекает реакция: в гомогенной или гетерогенной. По ЗДМ в выражение для скорости реакции записывают концентрации веществ в растворенном и газообразном состоянии. Если вещество в твердом состоянии, то его концентрацией пренебрегают (два ученика выходят к доске записать выражение для скорости реакции в гомогенной и гетерогенной среде):

2SO 2 + O 2 = 2SO 3 C + O 2 = CO 2
v = k С O2 С 2 SO2 v = k С O2

То есть, ЗДМ справедлив для гомогенных реакций. А как выглядит выражение для скорости химической реакции для гомогенной и гетерогенной реакции?

Для гомогенной реакции:

Для гетерогенной реакции:

Контроль. Для закрепления темы учащиеся отвечают на вопросы теста (Рисунок 6).

Затем все ответы учащиеся сверяют с экраном, где спроецированы ответы для проверки (Рисунок 7).

Итог урока: углубили знания по теме скорость химических реакций, экспериментально исследовали влияние концентрации веществ на скорость реакции. Я думаю, что вы приобрели новые знания, умения, которые пригодятся вам в будущем. И, наконец, маленькое пожелание на химическом языке.

IV. Рефлексия.

Желаю вам не громкими словами,
Чтоб не взрывались, словно водород, при неудачах
Что за вами следом,
И не были инертны, как неон, в пути,
Что вам пока еще невидан.

Вы будьте терпеливы, как судьба,
Не окисляйтесь, словно группа щелочных металлов,
Трудолюбивыми всегда
На долгие и долгие года.

Пусть будет меньше ингибиторов,
Как бремя, тормозящих путь подчас.
Пусть будет больше индивидуумов,
Талантливых и творческих из вас.

Активны будьте в жизни нашей бешеной,
Словно свободный радикал.
Катализаторами вам в пути обещаны
Любовь, терпение и доброта.


Тиосерная кислота - неорганическое соединение, двухосновная сильная кислота с формулой H 2 SO 3 S, бесцветная вязкая жидкость, реагирует с водой. Термически неустойчива.Быстро, но не мгновенно, разлагается в водных растворах. В присутствии серной кислоты разлагается мгновенно.

Образует соли - тиосульфаты.Тиосульфа́ты - соли и сложные эфиры тиосерной кислоты, H 2 S 2 O 3 . Тиосульфаты неустойчивы, поэтому в природе не встречаются. Наиболее широкое применение имеют тиосульфат натрия(Na 2 S 2 O 3) и тиосульфат аммония ((NH 4) 2 SO 3 S).

Получение тиосерной кислоты: 1) Реакция сероводорода и триоксида серы в этиловом эфире при низких температурах: ; 2) Действие газообразного хлористого водорода на тиосульфат натрия:

Химические свойства тиосерной кислоты:

1)Термически очень неустойчива:

2)В присутствии серной кислоты разлагается:

3)Реагирует с щелочами:

4)Реагирует с галогенами:

Тиосульфаты получаются:

1) при взаимодействии растворов сульфитов с сероводородом:

2)При кипячении растворов сульфитов с серой:

3)При окислении полисульфидов кислородом воздуха: ,

Химические свойства тиосульфатов:

1)При нагревании до 220 °C распадается по схеме:

2)Тиосульфаты - сильные восстановители:С сильными окислителями, например, свободным хлором, окисляется до сульфатов или серной кислоты:

3)Более слабыми или медленно действующими окислителями, например, иодом, переводится в соли тетратионовой кислоты:

4)Выделить тиосерную кислоту (тиосульфат водорода) реакцией тиосульфата натрия с сильной кислотой невозможно, так как она неустойчива и тут же разлагается:

5)Расплавленный кристаллогидрат Na 2 S 2 O 3 ·5H 2 O очень склонен к переохлаждению.

Практическое применение тиосульфата натрия: в фотографии,аналитической и органической химии,горнорудной промышленности, текстильной и целлюлозно-бумажной промышленности, пищевой промышленности, медицине.

Биологическая роль серы: Как и элементы органогены, сера в виде отдельного элемента не обладает биологическим значением. Ее биологическая роль состоит в том, что она входит в структуру таких аминокислот, как цистеин и метионин, которые и выполняют в животных организмах (в том числе у человека), ряд незаменимых функций.

Круговорот серы в природе: Растения получают ее из почвы в виде серной кислоты; во всяком другом виде сера для зеленых растений недоступна. В теле растения серная кислота путем сложных, пока еще не разъясненных химических преобразований служит материалом для построения белковых веществ, в которых сера находится уже в совершенно иной форме, чем в серной кислоте. В то время, как сера в виде серной кислоты соединена с кислородом, газом, находящимся в воздухе и поддерживающим всякое горение и дыхание, в белках сера уже оторвана от кислорода и соединена с другим элементом с углеродом, который сам по себе представляет обыкновенный уголь. При разложении белков после смерти животного или растения, гнилостные бактерии отрывают серу из белков и выпускают ее в соединении с новым элементом водородом. В таком соединении сера представляет собой тот отвратительный вонючий газ, обладающий запахом тухлых яиц, который всегда образуется при гниении белков и о котором уже была речь раньше. В виде сероводорода сера и попадает в почву.

15. Химия элементов 5 А группы. Распространенность в природе, минералы. Водородные и кислородные соединения. Оксиды и гидроксиды различных степеней окисления. Изменение кислотно-основных и окислительно-восстановительных свойств соединений мышьяка, сурьмы и висмута в степенях окисления +3 и +5.

Химия элементов 5 А группы: В группу входят азот N, фосфор P, мышьяк As, сурьма Sb и висмут Bi . Элементы главной подгруппы V группы, имеют пять электронов на внешнем электронном уровне. В целом характеризуются как неметаллы. Способность к присоединению электронов выражена значительно слабее, по сравнению с халькогенами и галогенами. Все элементы подгруппы азота имеют электронную конфигурацию внешнего энергетического уровня атома ns²np³ и могут проявлять в соединениях степени окисления от −3 до +5 . Вследствие относительно меньшей электроотрицательности связь с водородом менее полярна,чем связь с водородом халькогенов и галогенов. Водородные соединения этих элементов не отщепляют в водном растворе ионы водорода, иными словами, не обладают кислотными свойствами. Первые представители подгруппы - азот и фосфор - типичные неметаллы, мышьяк и сурьма проявляют металлические свойства, висмут - типичный металл. Таким образом, в данной группе резко изменяются свойства составляющих её элементов: от типичного неметалла до типичного металла. Химия этих элементов очень разнообразна и, учитывая различия в свойствах элементов, при изучении её разбивают на две подгруппы - подгруппу азота и подгруппу мышьяка.

Распространенность в природе, минералы. Азот - важнейшая составная часть атмосферы (78% ее объема). В природе встречается в белках, в залежах нитрата натрия. Природный азот состоит из двух изотопов: 14 N (99,635% массы) и 15 N (0,365% массы).Фосфор входит в состав всех живых организмов. В природе встречается в виде минералов. Фосфор широко применяется в медицине, сельском хозяйстве, авиации, при добыче драгметаллов.Мышьяк, сурьма и висмут распространены достаточно широко, в основном в виде сульфидных руд. Мышьяк - один из элементов жизни, способствующий росту волос. Соединения мышьяка ядовиты, но в малых дозах могут оказывать лечебное свойства. Мышьяк применяется в медицине и ветеринарии.

Водородные и кислородные соединения.1)Для азота известны оксиды , отвечающие всем его положительным степеням окисления (+1,+2,+3,+4,+5): N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 . При обычных условиях азот с кислородом не взаимодействует, только при пропускании через их смесь электрического разряда. Молекула азотной кислоты HNO 3 состоит из трех элементов, соединенных между собой ковалентными связями. Это молекулярное вещество, содержащее предельно окисленный атом азота. Однако валентность азота в кислоте равна четырем вместо обычной степени окисления азота. Аммиак - одно из важнейших водородных соединений азота. Он имеет огромное практическое значение. Жизнь на Земле во многом обязана некоторым бактериям, которые могут перерабатывать азот воздуха в аммиак.2)Соединения фосфора с водородом представляет собой газообразный фосфористый водород, или фосфин PH 3 (бесцветный ядовитый газ с чесночным запахом, воспламеняется на воздухе). У фосфора несколько оксидов: оксид фосфора (III) P 2 O 3 (белое кристаллическое вещество, образуется при медленном окислении фосфора в условиях недостатка кислорода, ядовит) и оксид фосфора (V) P 2 O 5 (образуется из P 2 O 3 при его нагревании, растворим в воде с образованием фосфористой кислоты средней силы) наиболее важные. Наиболее характерный свойством второго является гигроскопичность (поглощение паров воды из воздуха), при этом он расплывается аморфную массу HPO 3 . При кипячении P 2 O 5 образуется фосфорная кислота H 3 PO 4 (белое кристаллическое вещество, расплывается на воздухе, t пл =42,35 о С,не ядовита, растворима в воде, электролит, получают, окисляя 32%-ую азотную кислоту). Фосфаты почти всех металлов (кроме щелочных) нерастворимы в воде. Дигидрофосфаты хорошо растворимы в воде.

Оксиды и гидроксиды различных степеней окисления. N 2 O, NO, N 2 O 3 , NO 2 , N 2 O 4 , N 2 O 5 ,P 2 O 3, P 2 O 5, P 2 O 3,As2O3, As2O5, Sb2O3, Sb2O5, Вi2О3, Вi2О5, Вi(ОН)3.

Изменение кислотно-основных и окислительно-восстановительных свойств соединений мышьяка, сурьмы и висмута в степенях окисления +3 и +5.

Азот, нахождение в природе. Соединение с водородом,галогенами, кислородом. Аммиак, получение, свойства и его соли. Азотоводородная кислота, соли азиды. Амиды, имиды и нитриды металлов.Биологическая роль азота.

Азо́т - 1s 2 2s 2 2p 3. Элемент 15-й группы (по устаревшей классификации - главной подгруппы пятой группы) второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером7. Обозначается символом N . Простое вещество азот - достаточно инертный при нормальных условиях двухатомный газ без цвета, вкуса и запаха (формула N 2), из которого на три четверти состоит земная атмосфера.

Нахождение в природе: В большой части азот находится в природе в свободном состоянии. Свободный азот является главной составной частью воздуха, который содержит 78, 2 % (об.) азота. Над одним квадратным километром земной поверхности в воздухе находиться 8 млн. т азота. Общее содержание его в земной коре оценивается величиной порядка 0.03 мол. доли, % . Азот входит в состав сложных органических соединений- белков, которые входят в состав всех живых организмов. В результате отмирания последних и тления их останков образуются более простые азотные соединения, которые при благоприятных условиях, (главным образом - отсутствие влаги) могут накапливаться. Именно такого происхождения, по – видимому, залежи NaNO3в Чили, имеющие некоторое промышленное значение в производстве связанного азота, то есть в виде соединений. Также в природе встречается такой минерал, как индийская селитра K NO3 . По словам известного советского микробиолога В. Л. Омелянского, «азот более драгоценен с общебиологической точки зрения, чем самые редкие из благородных металлов».

Соединение с водородом,галогенами, кислородом:1) Аммиак - соединение азота с водородом. Имеет важное значение в химической промышленности. Формула аммиака - NH5.2) Азотная кислота HNO3 - сильная одноосновная кислота. В разбавленных растворах она полностью распадается на ионы Н* и NO.3) С галогенами азот непосредственно не реагирует, косвенными путями получены NF 3 , NCl 3 , NBr 3 и NI 3 , а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF 3).Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые - при хранении) на простые вещества. Так, NI 3 выпадает в осадок при сливании водных растворов аммиака и иодной настойки. Уже при легком сотрясении сухой NI 3 взрывается:2NI 3 = N 2 + 3I 2 . 4) Для азота известны окислы, по составу формально отвечающие всем валентностям от. единицы до пяти: N2 O – закись азота, NO – окись азота, N2 O3 – азотистый ангидрид, NO2 – двуокись азота, N2 O5 – азотный ангидрид.

Аммиак, получение, свойства и его соли.Аммиак - соединение азота с водородом. Имеет важное значение в химической промышленности. Формула аммиака - NH5.

Получение аммиака

1) В промышленности получение аммиака связано с прямым его синтезом из простых веществ. Как уже отмечалось, источником азота служит воздух, а водород получают из воды.3H 2 + N 2 -> 2NH 3 + Q .2) Получение аммиака в лабораторных условиях производят из смеси твёрдого хлорида аммония (NH 4 Cl) и гашенной извести. При нагревании интенсивно выделяется аммиак.2NH 4 Cl + Ca(OH) 2 -> CaCl 2 + 2NH 3 + 2H 2 O.

Свойства аммиака: 1)присоединяет протон, образуя ион аммония:

2) Взаимодействуя с кислотами даёт соответствующие соли аммония:

3) Амиды щелочных металлов получают, действуя на них аммиаком:

4) Амиды являются более сильными основаниями, чем гидроксиды, а следовательно, подвергаются в водных растворах необратимому гидролизу:

5) При нагревании аммиак проявляет восстановительные свойства. Так, он горит в атмосфере кислорода, образуя воду и азот. Окисление аммиака воздухом на платиновом катализаторе даёт оксиды азота, что используется в промышленности для получения азотной кислоты:

6) Окисляя аммиак гипохлоритом натрия в присутствии желатина, получают гидразин:

7) С галогеноалканами аммиак вступает в реакцию нуклеофильного присоединения, образуя замещённый ион аммония (способ получения аминов):

Соли аммиака: Соли аммония - твёрдые кристаллические вещества, не имеющие окраски. Почти все они растворяются в воде, и им характерны все те же свойства, которые имеют известные нам соли металлов. Они взаимодействуют со щелочами, при этом выделяется аммиак.
NH 4 Cl + KOH -> KCl + NH 3 + H 2 O
При этом, если дополнительно воспользоваться индикаторной бумагой, то эту реакцию можно использовать - как качественную реакцию на соли аммония . Соли аммония взаимодействуют с другими солями и кислотами. Например,
(NH 4) 2 SO 4 + BaCl 2 -> BaSO 4 + 2NH 4 Cl
(NH 4) 2 CO 3 + 2HCl 2 -> 2NH 4 Cl + CO 2 + H 2 O
Соли аммония неустойчивы к нагреванию. Некоторые из них, например хлорид аммония (или нашатырь), - возгоняются (испаряются при нагревании), другие, например нитрит аммония, - разлагаются
NH 4 Cl -> NH 3 + HCl
NH 4 NO 2 -> N 2 + 2H 2 O
Последняя химическая реакция - разложение нитрита аммония - используется в химических лабораториях для получения чистого азота.

Азотоводородная кислота, соли азиды. Азо́тистоводоро́дная кислота́ , азоими́д , HN 3 - кислота, соединение азота с водородом. Бесцветная, летучая, чрезвычайно взрывоопасная (взрывается при нагреве, ударе или трении) жидкость с резким запахом. Очень токсична. Её хорошо растворимые соли тоже очень ядовиты. Механизм токсичности аналогичен цианидам (блокирование цитохромов). Азиды- химические соединения, содержащие одну или несколько групп - N 3 , производные азотистоводородной кислоты (См.Азотистоводородная кислота) HN 3 . К неорганическим А. относятся соли HN 3 [например, А. натрия NaN 3 , А. свинца Pb(N 3) 2 ], галогеназиды (например, хлоразид CIN 3) и др. Большинство неорганических А. взрывается при лёгком ударе или трении даже во влажном состоянии; таков, например, Азид свинца, применяющийся как инициирующее взрывчатое вещество. Исключение составляют NaN 3 и др. соли щелочных и щёлочноземельных металлов. Исходным материалом для получения др. солей HN 3 , а также самой кислоты обычно служит А. натрия, получаемый пропусканием закиси азота через расплавленный амид натрия: NaNH 2 + ON 2 = NaN 3 +H 2 O. Все органические А., алкильные и арильные (общей формулы RN 3) или ацильные ( 2)N 3 .

Амиды, имиды и нитриды металлов.

Амиды металлов MeNH 2 - соединения, содержащие ионы NH 2 − . Амиды являются аналогами гидроксидов, но являются более сильными основаниями. Некоторые амиды растворяются в аммиаке, причем амид растворим в аммиаке так же, как и гидроксид этого металла в воде. Аммиачные растворы амидов проводят электрический ток.В амиде один или два атома водорода могут быть замещены на органические радикалы, как, например, в диизопропиламиде лития LiN(C 3 H 7) 2

ИМИДЫ МЕТАЛЛОВ -соед. общей ф-лы М2/nNН, где п - степень окисления металла М. Легко гидролизуются водой, образуя гидроксид металла и NH3. При нагр. переходят в нитриды металлов или разлагаются на своб. металл, N2 и Н2. Получают имиды металлов нагреванием амидов металлов в вакууме при 400-600 °С. Известно небольшое число имидов металлов. Наиб. изучен имид лития Li2NH, к-рый существует в двух кристаллич. модификациях; до 83 °С устойчива форма с тетрагон. решеткой (а = 0,987 нм, b = 0,970 нм, с = 0,983 нм, z = 16; плотн. 1,20 г/см3), выше 83°С - с кристаллич. решеткой типа антифлюорита (плотн. 1,48 г/см3). Получено множество орг. производных имидов металлов, в к-рых атом водорода замещен на орг. pадикал. П. И.Чукуров.
Нитриды - соединения азота с менее электроотрицательными элементами, например, с металлами (AlN;TiN x ;Na 3 N;Ca 3 N 2 ;Zn 3 N 2 ; и т. д.) и с рядом неметаллов (NH 3 , BN, Si 3 N 4).

Соединения азота с металлами чаще всего являются тугоплавкими и устойчивыми при высоких температурах веществами, например, эльбор. Нитридные покрытия придают изделиям твёрдость, коррозионную стойкость; находят применение в энергетике, космической технике.

Биологическая роль азота. Ч истый (элементарный) азот сам по себе не обладает какой-либо биологической ролью. Биологическая роль азота обусловлена его соединениями. Так в составе аминокислот он образует пептиды и белки (наиболее важный компонент всех живых организмов); в составе нуклеотидов образует ДНК и РНК (посредством которых передается вся информация внутри клетки и по наследству); в составе гемоглобина участвует в транспорте кислорода от легких по органам и тканей.

1. Влияние концентрации на скорость реакции тиосульфата натрия с серной кислотой . В три пробирки налейте 0,1 н. раствор тиосульфата натрия: в первую – 5 мл, во вторую – 10 мл и третью – 15 мл. После этого в первую пробирку добавьте 10 мл, а во вторую – 5 мл дистиллированной воды. Затем в три другие пробирки налейте по 5 мл 0,1 н. раствора серной кислоты. Слейте попарно приготовленные растворы, в результате чего произойдет реакция

Na 2 S 2 O 3 +H 2 SO 4 =Na 2 SO 4 +SO 2 +H 2 O+S

С помощью секундомера отметьте, через какое время появляется сера в каждой пробирке. Результаты запишите в следующую таблицу:

Таблица 9.1

Какой вывод можно сделать из полученных данных?

2. Зависимость скорости реакции от температуры . Влияние температуры на скорость реакции взаимодействия тиосульфата натрия с серной кислотой. Приготовьте шесть одинаковых стаканов. В три стакана налейте по 15 мл 0,1 н. раствора тиосульфата натрия, а в другие три стакана – по 15 мл 0,1 н. раствора серной кислоты. Нагрейте на водяной бане одну пару стаканов с растворами тиосульфата натрия и серной кислоты до температуры на 10°С выше, а другую пару стаканов на 20°С выше комнатной в течение 15–20 мин, контролируя температуру воды термометром. Пока растворы нагреваются, слейте оставшиеся растворы тиосульфата натрия и серной кислоты при комнатной температуре. Отметьте время появления серы в стаканах. То же проделайте и с подогретыми растворами. Полученные данные запишите в таблицу:

Таблица 9.2

Какие выводы можно сделать относительно влияния температуры на скорость реакции из полученных результатов?

3. Изучение скорости реакции разложения перекиси водорода . Перекись водорода самопроизвольно медленно разлагается в соответствии с уравнением: Н 2 О 2 =Н 2 О+1/2О 2 . Скорость этого процесса можно увеличить введением катализатора и оценивать количеством выделенного кислорода за определенный промежуток времени. Опыт проводится в приборе, изображенном на рис. 2. Налейте через воронку в бюретку воды приблизительно до нулевого деления, плотно закройте отверстие бюретки пробкой со стеклянной трубкой. В одно колено сосуда Ландольта налейте с помощью воронки 1 мл раствора хлорида железа III – катализатор. В другое колено с помощью воронки налейте перекись водорода заданной преподавателем концентрации. Затем соедините сосуд Ландольта с бюреткой при помощи пробки с газоотводной трубкой. Проверьте герметичность прибора. Поместите сосуд Ландольта в термостат с заданной температурой и выдержите 10–15 мин. Установите одинаковый уровень воды в уравнительной воронке и бюретке, запишите величину уровня. Наклоняя сосуд Ландольта, приведите перекись водорода в контакт с катализатором. Через каждые 1–2 мин в течении 30 мин измеряйте объем выделенного кислорода V τ . Результаты измерений запишите в табл. 9.3.

Таблица 9.3

После полного разложения перекиси водорода сосуд Ландольта охладите до начальной температуры термостата, и вновь измерьте объем полностью выделенного кислорода V ∞ . По данным табл. 9.3 и по формуле

произведите расчет константы скорости реакции. Построить график зависимости:

Определите по тангенсу угла наклона прямой к оси абсцисс константу скорости реакции и сравните со среднеарифметическим значением (9.17). Целесообразно проводить опыты при двух температурах: 15–25°С и 30–40°С.

По значениям константы скорости реакции для двух температур по формуле:

где R=8,314 Дж/моль∙К, рассчитайте энергию активации реакции разложения перекиси водорода.

4. Влияние концентрации реагентов на химическое равновесие . При взаимодействии раствора хлорида железа (III) с роданидом калия образуются растворимые вещества и изменяется окраска растворов. Реакция обратимая:

FeCl 3 +3KCNS Fe(CNS) 3 +3KCl

Записать в таблице цвета растворов всех веществ системы:

Таблица 9.4.

Смешать в пробирке по 5 мл растворов хлорида железа (III) и роданида калия. Отметить окраску полученного раствора. Указать вещество, сообщившее окраску системе. Разлить полученный раствор в четыре пробирки по возможности равными частями. В первую пробирку добавить немного концентрированного раствора хлорного железа, во вторую – раствора роданида калия, в третью – немного кристаллического хлорида калия. Четвертую пробирку оставить для сравнения. Сравнить окраску растворов в пробирках и укажите, в каком направлении сместилось равновесие при добавлении FeCl 3 , KSCN и KCl. Составить уравнение для константы равновесия изученной реакции.

5. Влияние изменения температуры на химическое равновесие . При действии иода на крахмал образуется непрочное соединение сложного состава, окрашенное в синий цвет. Равновесие системы можно условно изобразить следующим уравнением:

Крахмал + иод иодокрахмальный комплекс

Налить в пробирку 2-3 мл раствора крахмала и добавить несколько капель иодной воды до появления синей окраски раствора. Нагреть пробирку до посветления раствора, а затем охладить до возвращения синей окраски. Определить какая реакция (прямая или обратная) является экзотермической, какая эндотермической. Объяснить изменение цвета при нагревании и охлаждении.